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MicroRNA-21 abrogates palmitate-induced cardiomyocyte apoptosis 
through caspase-3/NF-κB signal pathways

Introduction

Mature cardiomyocytes are easily influenced by fatty acid 
metabolism disorders caused by diseases such as diabetes, 
obesity, and hyperlipidemia (1). An abnormal accumulation of lip-
id in the myocardium results in glucose and lipid metabolism dis-
orders, which damage heart function (2, 3). Saturated fatty acids 
are especially damaging and have been reported to cause apop-
tosis of cardiomyocytes, islet beta cells, hepatic cells, vascular 
smooth muscle cells, and vascular endothelial cells (4-7). Of the 
saturated fatty acids, palmitate has been shown to accumulate 
in cardiomyocytes, leading to so-called “fat toxicity,” which can 

result in heart dysfunction, heart failure, and apoptosis (8-12). 
MicroRNAs (miRs), a class of endogenous non-coding RNAs 
approximately 22 nucleotides long, negatively regulate gene 
expression by inhibiting mRNA transcription. They play an im-
portant role in cell proliferation, metabolism, differentiation, and 
the occurrence and development of various diseases (13-15). 
The changes in the levels of miRs are related to many cardiac 
diseases, including arrhythmia, myocardial infarction, myocar-
dial fibrosis, and heart failure (16-19). A previous study detected 
abnormal expression of miR-21 in H9c2 cells when they were 
exposed to palmitate. The miR-21 expression level directly cor-
related with the apoptosis rate, indicating that miR-21 might be 
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involved in the regulation of cell death. Palmitate was reported 
to induce apoptosis of cardiomyocytes through either the PI3K/
AKT or AMPK signaling pathway (20, 21). In models of bacterial 
lipopolysaccharide induction, a reactive oxygen species (ROS)-
dependent pathway was found to be regulated by miR-146a (22). 
Furthermore, the expression of 23 miRNAs was altered after H2O2 
treatment in normal human fibroblasts (23). All these observa-
tions indicate that the expression of miRs play a significant role 
in fatty acid-induced apoptosis. However, few studies have fo-
cused on the exact mechanism of how certain miRs work. In the 
present study, we employ a model of palmitate-induced cardio-
myocyte apoptosis to explore whether miR-21 is related to the 
regulation of cell death and to investigate a possible underlying 
mechanism.

Methods

Cell culture
H9c2 embryonic rat heart-derived cells were obtained from 

Academia Sinica (Shanghai, China). Cells were cultured in 
DMEM containing 15% FBS, 100 U/mL penicillin, and 100 µg/mL 
streptomycin at 37°C in a humidified atmosphere of 5% CO2.

Cell viability assay
H9c2 cells were seeded at a density of 5×103 cells/well in 96-

well plates, and cell viability was determined using the MTT assay. 
The cells were incubated with palmitate at various concentra-
tions (0.2, 0.4, and 0.6 mM) for 12, 18, and 24 h. Following palmitate 
incubation, each well was washed twice with PBS to remove the 
medium before 10 µL 0.5 mg/mL MTT was added to each well and 
incubated for an additional 4 h at 37°C. The absorbance at 490 nm 
was read on a microplate reader and used as a measurement of 
cell viability. The absorbance was normalized to cells incubated in 
control medium, which were considered 100% viable.

Flow cytometry
Apoptotic cells were detected using the Annexin V-FITC/

propidium iodide kit (Vazyme Biotech, Nanjing, China) according 
to the manufacturer’s instructions. In brief, the palmitate-treated 
cells were washed twice with PBS and dislodged using 0.25% 
trypsin. Cells were centrifuged and resuspended in PBS con-
taining 50 µg/mL propidium iodide, 0.1 g/L RNase, and 1% bovine 
serum albumin. The cells were then incubated at 37°C for 30 min 
in the dark before analysis.

Western blot analysis
Cell lysates were prepared and 20 µg of these were sepa-

rated by 12% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis and transferred to nitrocellulose membranes. Spe-
cific monoclonal anti-cleaved caspase-3 [Cell Signal Technology 
(CST), SN: 4380, dilution: 1:2000], monoclonal anti-Bcl-2 (CST, 
SN: 11988, dilution: 1:2000), monoclonal anti-p65 (CST, SN: 5741, 

dilution: 1:2000), monoclonal anti-p-p38 (CST, SN: 3195, dilution: 
1:2000), and monoclonal anti-β-actin (CST, SN: 8457, dilution: 
1:4000) antibodies were used. HRP-conjugated immunoglobulin 
was used as the secondary antibody (Jackson ImmunoResearch 
Laboratories, West Grove, PA, USA). West Pico chemilumines-
cence was used as the substrate to visualize protein bands, 
which were quantified using densitometric image analysis soft-
ware (Image Master VDS; Pharmacia Biotech) and normalized to 
β-actin expression.

Reverse transcription-polymerase chain reaction (RT-PCR)
Total RNA was isolated using the Trizol reagent (Invitrogen, 

San Diego, CA, USA). The first strand of cDNA was synthesized 
using a reverse transcription kit (PrimeScript™ Synthesis kit, Ta-
kara Bio, Inc., Dalian, China). RT-PCR was performed using the 
SYBR Premix Ex Taq Kit (Takara Bio, Inc., Dalian, China) on an 
Applied Biosystems 7500 Real-Time PCR system (Applied Bio-
systems, White Plains, NY, USA). β-actin was used as an internal 
control. The experiment was performed in triplicates. Primers 
for miR-21 were designed and synthesized by Invitrogen China.

ROS detection
ROS production was measured using an ELISA kit (Vazyme 

Biotech) according to the manufacturer’s instructions. Mea-
surements are given as fold changes compared with control.

Statistical analysis
Experimental results are presented as the mean ± standard 

deviation. Comparisons between two groups were conducted 
using the two-tailed Student’s t-test or the Chi square test (SPSS 
18.0, Chicago, IL, USA). The comparison of multiple groups was 
analyzed using ANOVA with Holm–Sidak’s or Dunnett’s multiple 
comparisons test (GraphPad Prism 6.0, La Jolla, CA, USA). Differ-
ences were considered statistically significant when the p value 
was <0.05.

Results

Palmitate inhibits H9c2 proliferation and induces H9c2 
apoptosis
H9c2 was exposed to 0.2, 0.4, 0.6, and 0.8 mM palmitate for 

12, 18, and 24 h. Significant differences in cell viability were 
detected at 0.4 and 0.6 mM palmitate exposure for 18 and 24 h 
when compared with controls, which had not been treated with 
palmitate (Fig. 1a, Table 1-3). The apoptosis rate of H9c2 cells was 
measured after 24 h of exposure to 0.4 and 0.6 mM palmitate. The 
rate significantly increased in response to both concentrations 
compared with control, but there was no significant difference 
in the apoptosis rate between the two concentrations (Fig. 1b, 
Table 1-3). Based on this, 0.4 mM palmitate for 24 h was used as 
the exposure condition in subsequent experiments. In addition, 
both the expression of cleaved caspase-3 and caspase-3 activity 
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(3-fold) was increased, whereas Bcl-2 expression was inhibited, 
compared with the β-actin internal control after 24 h of exposure 
to palmitate (Fig. 1c and 1d, Table 1-3).

Role of miR-21 in palmitate-induced H9c2 cell apoptosis
Compared with an internal control, miR-21 expression was 

reduced almost 3-fold after 24 h of exposure to 0.4 mM palmitate 

Figure 1. Palmitate-induced H9c2 cardiomyocyte apoptosis.
(a) H9c2 cells treated with palmitate. (b) The apoptosis rate of H9c2 significantly increased after 24 h of exposure to 0.4 and 0.6 mM palmitate 
compared with the control. No significant difference in apoptosis was observed between the two concentrations. Western blot detected cleaved 
caspase-3 (c) and Bcl-2 (d) expression after 24 h of exposure to 0.4 mM palmitate
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Table 1. Relative cell viabilities of H9c2 treated with different concentrations of palmitate (0, 0.2, 0.4, 0.6, and 0.8 mM) for 
varying periods of time (12, 18, and 24 h)

  12h   18h   24h

 Mean SD n Mean SD n Mean SD n

0 1 0.03 5 1 0.04 5 1 0.02 5

0.2 0.93 0.18 5 0.85 0.21 5 0.83 0.19 5

0.4 0.81 0.21 5 0.71 0,11 5 0.59 0.12 5

0.6 0.69 0.22 5 0.58 0.20 5 0.49 0.15 5

0.8 0.55 0.18 5 0.51 0.27 5 0.46 0.23 5

SD - standard deviation
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(Fig. 2a, Table 4-6). The apoptosis rate was increased when miR-
21 was inhibited by an antagomir (an inhibitory miR-21 mimic), 
both in the presence and absence of palmitate, whereas a re-
duction in apoptosis was observed when a miR-21 mimic was 
expressed by transfection (Fig. 2b, Table 4-6). Moreover, cleaved 
caspase-3 expression was stable when transfected with the 

miR-21 mimic and was reduced after palmitate treatment (Fig. 
2c, Table 4-6).

Effect of miR-21 on Bcl-2 expression and ROS production
Bcl-2 protein expression was higher in H9c2 cells that were 

transfected with the miR-21 mimic in combination with palmitate 

Figure 2. Role of miR-21 in palmitate-induced H9c2 cell apoptosis.
(a) MiR-21 expression was reduced by 60% after 24 h of exposure to 0.4 mM palmitate. (b) H9c2 cell apoptosis rate was detected with transfection 
of a miR-21 antagomir (a miR-21 mimic) and a scrambled oligonucleotide after 24 h of exposure to 0.4 mM palmitate. (c) Caspase-3 expression was 
measured with transfection of the miR-21 mimic with or without palmitate exposure
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Table 2. Apoptosis rate of H9c2 after 24 h of exposure to 0, 
0.4, and 0.6 mM palmitate

 0 mM 0.4 mM 0.6 mM

Mean±SD 6.220±0.2587 25.80±2.103 27.97±2.692

n=3

SD - standard deviation

Table 3. Relative caspase-3 activity of H9c2 cells after 24 
h of exposure to 0.4 mM palmitate

 CTRL 0.4 mM

Mean±SEM 1.000±0.007 2.416±0.169

n=5

SEM - standard error of the mean



Zhou et al.
miR-21 abrogates cardiomypcytes' apoptosis through caspase-3/NF-κB 

Anatol J Cardiol 2018; 20: 336-46
DOI:10.14744/AnatolJCardiol.2018.03604340

exposure (Fig. 3a, Table 7-12). The overexpressed miR 21 alone 
did not induce ROS and DNA fragmentation in H9c2 cells. How-
ever, when cells were treated with palmitate, the miR-21 mimic 
downregulated ROS and DNA fragmentation compared with a 
scrambled oligo group (Fig. 3b and 3c, Table 7-12). Moreover, 3 

mM N acetylcysteine (NAC, an antioxidant agent) significantly 
inhibited apoptosis, DNA fragmentation, and cleaved caspase-3 
expression in H9c2 cells exposed to palmitate (Fig. 3d, 3e, and 3f, 
Table 7-12).

Figure 3. Effect of miR-21 on Bcl-2 expression and ROS production.
The expression of Bcl-2 (a), ROS (b), and DNA fragmentation (c) production were affected by the overexpression of miR-21 in H9c2 cells treated 
with palmitate. The effect of N acetylcysteine on apoptosis of H9c2 cells induced by palmitate (d, e, and f)
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Table 4. Relative miR-21 expression of H9c2 cells after 24 
h of exposure to 0.4 mM palmitate

 CTRL PAL

Mean±SEM 1.000±0.066 0.410±0.139

n=5

SEM - standard error of the mean

Table 5. Apoptosis rate of H9c2 cells transfected with a 
miR-21 antagomir (or a miR 21 mimic) and a scrambled 
oligonucleotide after 24 h exposure to 0.4 mM palmitate 
(mean±SD, n=5)

 Scrambled oligo Antagomir miR-21 mimic

CTRL 5.88±0.40 25.67±0.22 4.53±0.55

PAL 24.22±0.13 37.92±0.37 12.81±0.32
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Figure 4. miR-21 is involved in NF-κB pathway-related apoptosis and DNA fragmentation.
miR-21 affects p65 expression (a) and phosphorylation of p38 (b) in H9c2 cells treated with palmitate. An inhibitor of p38 rescues palmitate-induced 
H9c2 cell apoptosis (c, d, e, and f)
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MiR-21 affects nuclear factor κB pathway on palmitate-in-
duced H9c2 cell apoptosis
After 24 h of exposure to palmitate, the expression of p65, a 

key proinflammatory component of the nuclear factor κB (NF-
κB) pathway in the nucleus, was significantly increased (Fig. 4a, 
Table 13-19). The overexpression of miR-21 did not affect the ex-
pression levels of p65 either in the nucleus or in the cytoplasm 
but did completely suppress the increase of nuclear p65 expres-
sion after exposure to palmitate (Fig. 4a, Table 13-19). No signifi-
cant change in phosphorylated mitogen-activated protein kinase 
(MAPK) p38 (p-p38), a marker of inflammation and apoptosis, was 
observed in H9c2 cells transfected with the miR-21 mimic (Fig. 
4b, Table 13-19). However, miR-21 suppressed the upregulation 
of p-p38 expression after exposure to palmitate (Fig. 4b, Table 13-
19). Without palmitate stimulus, a p38 inhibitor had no effect on 
the expression of Bcl-2 or cleaved caspase-3 in H9c2 cells. When 
palmitate was included, the p38 inhibitor induced Bcl-2 expres-
sion and inhibited caspase-3 activity (Fig. 4c, Table 13-19). The 
p38 inhibitor did not induce apoptosis, ROS production, or DNA 
fragmentation in H9c2 cells; however, in the presence of palmi-
tate, the p38 inhibitor reduced apoptosis, ROS production, and 
DNA fragmentation (Fig. 4d-4f, Table 13-19).

Table 6. Relative caspase-3 activity of H9c2 cells 
transfected with a miR-21 mimic and a scrambled 
oligonucleotide after 24 h exposure to 0.4 mM palmitate 
(mean±SD, n=5)

 Scrambled oligo miR-21 mimic

CTRL 1.00±0.34 0.92±0.28

PAL 2.44±0.52 1.33±0.41

Table 7. Relative Bcl-2 expression of H9c2 cells 
transfected with a miR-21 mimic after 24 h exposure to 0.4 
mM palmitate

 PAL PAL+miR-21 mimic

Mean±SEM 1.000±0.0492 1.621±0.2737

n=5

Table 8. Relative ROS production of H9c2 cells transfected 
with a miR-21 mimic and a scrambled oligonucleotide 
after 24 h exposure to 0.4 mM palmitate (mean±SD, n=5)

 Scrambled oligo miR-21 mimic

CTRL 1.00±0.12 0.89±0.24

PAL 1.48±0.32 1.18±0.46

Table 9. Relative DNA fragmentation of H9c2 cells 
transfected with a miR-21 mimic and a scrambled 
oligonucleotide after 24 h exposure to 0.4 mM palmitate 
(mean±SD, n=5)

 Scrambled oligo miR-21 mimic

CTRL 1.00±0.21 0.92±0.32

PAL 2.09±0.36 1.31±0.44

Table 10. Effect of N-acetylcysteine on apoptosis of H9c2 
cells induced by palmitate (mean±SD, n=5)

 Vehicle NAC (3 mM)

CTRL 5.03±0.45 4.43±0.65

PAL 25.73±1.81 11.80±0.51

Table 11. Effect of N-acetylcysteine on DNA fragmentation 
of H9c2 cells after 24 h exposure to 0.4 mM palmitate 
(mean±SD, n=5)

 Vehicle NAC (3 mM)

CTRL 1.00±0.18 0.88±0.31

PAL 2.09±0.31 1.21±0.23

Table 12. Effect of N-acetylcysteine on relative caspase-3 
activity of H9c2 cells after 24 h exposure to 0.4 mM 
palmitate (mean±SD, n=5)

 Vehicle NAC (3 mM)

CTRL 1.00±0.13 0.90±0.25

PAL 2.02±0.37 1.31±0.49

Table 13. Relative p65 expression (nucleus and cytosol) 
of H9c2 cells transfected with a miR-21 mimic after 24 h 
exposure to 0.4 mM palmitate (mean±SEM, n=5)

 CTRL miR-21 PAL PAL+miR-21

  mimic  mimic

Nucleus 0.335±0.019 0.346±0.017 0.568±0.018 0.434±0.020

Cytosol 0.483±0.019 0.503±0.016 0.610±0.028 0.603±0.022

Table 14. Relative phospho-p38 expression of H9c2 cells 
transfected with a miR-21 mimic after 24 h exposure to 0.4 
mM palmitate

 CTRL miR-21 PAL PAL+miR-21

  mimic  mimic

Mean±SEM 1.000±0.148 0.940±0.201 3.474±0.344 1.841±0.233

n=5

SEM - standard error of the mean
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Discussion

It is well known that the loss of cardiomyocytes is a major 
factor that contributes to cardiac dysfunction and heart failure 
(24). Inhibition of cardiomyocyte apoptosis is a potential strategy 
to prevent the development of heart failure (25). In many heart 
diseases, saturated fatty acids were found to play a key role in 
myocardial injury, a consequence of cardiomyocyte apoptosis 

(26-28). Large amounts of palmitate, a key saturated fatty acid, 
can accumulate in cardiomyocytes and induce apoptosis (29); 
however, the exact pathway of palmitate-induced apoptosis is 
yet to be determined. MiRs are involved in the regulation of gene 
transcription. They can specifically recognize and target the 3′ 
non-coding region of mRNA at the transcriptional level, causing 
degradation or inhibition of mRNA translation, thereby regulating 
gene expression. An altered gene regulation plays an important 
role in the occurrence and development of various diseases (30). 
In the heart, miRs have been found to regulate various patho-
physiological processes, including cardiac remodeling, cardiac 
development, myocardial fibrosis, angiogenesis, and cardio-
myocyte apoptosis (31). In terminally differentiated cells, such 
as cardiomyocytes, regulation of apoptosis is crucial because 
inadequate or excessive apoptosis can lead to atherosclerosis, 
myocardial infarction, heart failure, and other cardiovascular 
diseases (32).

It has been found in recent years that miR-21 is highly ex-
pressed in vascular smooth muscle cells, vascular endothe-
lial cells, cardiomyocytes, and cardiac fibroblasts. The levels 
of miR-21 expression have been shown to be altered in various 
cardiovascular diseases, indicating that miR-21 is involved in the 
occurrence and development of cardiovascular diseases (33-
36). Studies have confirmed that miR-21 is an apoptosis-related 
miR, which regulates cell cycle (37, 38). Sayed et al. established 
a model of cardiomyocyte apoptosis by continuous hypoxia and 
observed the downregulation of miR-21 and upregulation of FasL, 
which was reversed by AKT activation. However, the overex-
pression of miR-21 inhibited upregulation of PTEN and FasL and 
increased the levels of phosphorylated AKT, leading to reduced 
infarct size and alleviation of heart failure (39). In the work pre-
sented here, we induced apoptosis in H9c2 cells by addition of 
0.4 and 0.6 mM palmitate. The apoptosis rate was significantly 
higher than that in the non induced control group. Moreover, 
palmitate increased the expression of cleaved caspase-3 and 
decreased the expression of Bcl-2, indicating that the caspase 
and Bcl-2/Bax pathways might be involved. Bcl-2 and caspase-3 
are two classic markers of apoptosis. The Bcl-2 family of genes 
affects mitochondrial transmembrane potential and has been ex-
tensively studied. The antiapoptotic gene Bcl-2 and the proapop-
totic gene Bax are two representative members of the Bcl-2 fam-
ily. Bcl-2 was the first gene found to inhibit apoptosis (40). High 
expression of Bcl 2 helps maintain stability of the mitochondrial 
membrane potential by keeping the mitochondrial permeability 
transition pore in a closed state, preventing the release of mi-
tochondrial apoptotic proteins, and subsequently cell apoptosis. 
The caspase family of genes plays an essential role in mediat-
ing cell apoptosis, among which caspase-3 is the main executor 
of cell apoptosis and can be activated by various upstream fac-
tors (41-44). Activated caspase-3 induces the activation of other 
caspase members in a protease cascade, which ultimately leads 
to apoptosis (45). Studies have shown that miR-21 overexpres-
sion could inhibit H2O2-induced apoptosis of cardiomyocytes by 

Table 15. Effect of p38 MAPK inhibitor on relative Bcl-2 and 
caspase-3 expression of H9c2 cells after 24 h exposure to 
0.4 mM palmitate (mean±SEM, n=5)

 CTRL p38 MAPK PAL PAL+p38

  inhibitor  MAPK

    inhibitor

Bcl-2 8.849±0.452 7.911±0.501 3.802±0.237 7.038±0.492

Caspase-3 0.322±0.009 0.431±0.011 0.812±0.014 0.623±0.015

Table 16. Effect of p38 MAPK inhibitor on relative 
caspase-3 activity in H9c2 cells after 24 h exposure to 0.4 
mM palmitate (mean±SEM, n=5)

 Vehicle p38 MAPK inhibitor

CTRL 1.000±0.0134 0.960±0.063

PAL 1.920±0.098 1.310±0.183

Table 17. Effect of p38 MAPK inhibitor on apoptosis of H9c2 
cells induced by palmitate (mean±SEM, n=5)

 Vehicle p38 MAPK inhibitor

CTRL 5.030±0.179 4.930±0.291

PAL 25.73±0.854 15.80±0.411

Table 18. Effect of p38 MAPK inhibitor on relative ROS 
production in H9c2 cells after 24 h exposure to 0.4 mM 
palmitate (mean±SEM, n=5)

 Vehicle p38 MAPK inhibitor

CTRL 1.000±0.054 0.932±0.107

PAL 1.687±0.112 1.280±0.183

Table 19. Effect of p38 MAPK inhibitor on relative DNA 
fragmentation in H9c2 cells after 24 h exposure to 0.4 mM 
palmitate (mean±SEM, n=5)

 Vehicle p38 MAPK inhibitor

CTRL 1.000±0.103 0.964±0.147

PAL 1.997±0.277 1.261±0.196
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downregulating the expression of PDCD4 (46), a protective effect 
also observed in hypoxia/reoxygenation-induced cell apoptosis 
and in rat hearts after ischemia/reperfusion injury in vivo (37). In 
the present study, we found that the overexpression of a miR-21 
mimic could inhibit the apoptosis induced by palmitate, whereas 
the low expression of miR-21 accelerated the process. ROS pro-
duction and DNA fragmentation, which correlate with the apop-
tosis, were detected in the cells. The downregulation of miR-21 
in cardiomyocyte apoptosis has been reported by other groups 
and has been shown to correlate with increased expression of 
FasL protein. It was also found that the expression of miR-21 in 
cardiac fibroblasts was significantly higher than that in normal 
cardiomyocytes. In the stress state, the expression of miR-21 in 
cardiac fibroblasts can significantly activate extracellular signal 
regulated kinase (ERK)/MAPK pathway proteins and promote the 
proliferation of fibroblasts and fibrosis (47).

Our work has demonstrated a new pathway by which miR-21 
regulates apoptosis in cardiomyocytes, namely through the cas-
pase-3/NF-κB pathway. NF-κB is an inducible transcription factor 
responsible for the expression of various genes involved in in-
flammation, injury, apoptosis, embryonic development, and pro-
liferation (48, 49). As the main functional element, p65 is involved 
in the regulation of various physiological and pathophysiological 
events (50-52). We showed that p65 expression level in the nucle-
us increased by the exposure to palmitate, which was inhibited 
by miR-21. The overexpression of miR-21 did not affect the ex-
pression levels of p65 either in the nucleus or in the cytoplasm 
but did completely suppress the increase of nuclear p65 expres-
sion after exposure to palmitate. A combination of palmitate and 
a p38 inhibitor induced Bcl-2 expression and reduced caspase-3 
activity. In addition, the p38 inhibitor reduced palmitate-induced 
apoptosis, suggesting that p38 is a key factor in cardiomyocyte 
apoptosis. Additionally, p38 is one of the first identified tran-
scription factors, which is regulated by phosphorylation; p38 is 
involved in various pathophysiological processes, including cell 
growth, proliferation, differentiation, and apoptosis, by regulating 
the expression of many downstream target genes. Phospho-p38 
causes cardiomyocyte damage by promoting inflammation and 
cell apoptosis. Studies have shown that p38 can be activated by 
various inflammatory factors, including oxygen free radicals re-
leased after myocardial ischemia/reperfusion injury and calcium 
overload. p38 activation induces expression of some early genes, 
such as c-fos, c-jun, and NF-κB (53, 54), which upregulates the 
expression of cytokines, such as TNF-α, IL-1, and IL-8, leading to 
secondary myocardial damage (55-57). We also observed altera-
tions of ROS and the amount of DNA fragmentation in H9c2 cells. 
ROS can activate several pro-apoptotic signaling pathways, such 
as MAPK p38, c-Jun N-terminal kinase, apoptosis signal regulat-
ing kinase 1, and ERK (58).

Study limitations
For this study, we used the embryonic rat heart-derived cell-

line H9c2. The link between apoptosis and the miR-21/caspase-3/

NF-κB pathways makes these pathways promising as therapeu-
tic targets for heart disease; however, the findings need further 
study and validation in in vivo experiments and human cells to 
confirm the potential therapeutic benefit.

Conclusion

In summary, miR-21 protects cardiomyocytes from apoptosis 
induced by palmitate through the caspase-3/NF-κB pathway.
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