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Introduction

Cardiovascular disorders are leading cause of death world-
wide, with death rates up to 40% in some developing countries 
(1). Heart failure (HF) is a progressive and debilitating form of 
cardiovascular disorder with penetrance that rises exponen-
tially with age. There are various causes of HF, but depressed 
ejection fraction following myocardial infarction (MI) is among 
the most common and can progressively lead to end-stage car-
diomyopathy. Myocardium may be stunned and hibernate during 
ischemic MI or heart attack. If these cardiac muscle cells cannot 
recover their function, lack of viable myocardium leads to death 
in half of these patients within 5 years of diagnosis (2). Heart has 
been thought to be a terminally differentiated organ due lack of 
regeneration after HF, but there is some controversy, as recovery 
has also been observed following myocardial necrosis (3).

Heart transplantation is postulated as definitive treatment 
for HF. However, heart transplantation is limited by scarcity of 
human leukocyte antigen-compatible donors, as well as immu-
nological complications that occur following transplantation (4). 
Thus, researchers seek alternative solutions for HF including in-
duction of cardiac regeneration. In the last decade, promising 
studies related to cardiac regeneration have gained enormous 

momentum and have demonstrated cardiomyocyte (CM) renew-
al, either spontaneously or following cell-based therapies (5–7). 

Different species have distinct regenerative capacities 
following various cardiac injury (8). Newts and zebrafish, for 
instance, regenerate their hearts following myocardial injury 
in as little as 60 days (9). Even though adult mammalian heart 
does not possess full regenerative capacity, it does has regen-
erative potential at a certain age and after specific stimulation 
(8) (Fig. 1). HF commonly originates from systolic HF due to lack 
of sufficient CM renewal following cardiac injury (10, 11). Re-
cent landmark studies indicate that adult heart can produce 
new CMs (5, 6). The source of newly produced CMs is not yet 
evident, but pre-existing CMs or resident cardiac stem cells 
are thought to have a role in CM regeneration (5). During em-
bryonic development and early postnatal period, CM prolifera-
tion (hyperplesia) is considered the main mechanism of car-
diac growth. In the adult heart, cardiac hypertrophy becomes 
major growth mechanism subsequent to CM cell cycle arrest. 
Interestingly, cardiac development in Xenopus genus requires 
Hif-1α signaling, which acts upstream of Nkx2.5 (12). Concomi-
tantly, it has also recently been demonstrated that adult mouse 
heart possesses hypoxic microenvironment where Hif-1α+ 
CMs are localized (labeled with TnnT) and glycolytic cardiac 
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progenitors are housed in subepicardium (13). These hypoxic 
progenitors and CMs need to be further analyzed with lineage 
tracing studies to determine if they contribute to newly formed 
CMs. In addition, underlying mechanisms of CM turnover, role 
of CM proliferation, and contribution of extracardiac or resi-
dent stem cell population still remain to be determined (Fig. 
1). Cardiogenic factors, micro ribonucleic acid molecules, an-
timiRs, and small molecules have been shown to induce car-
diomyocyte proliferation and improvement of cardiac function 
following myocardial infarctions. In addition, studies showed 
that cellular therapies with stem cells could enhance renewal 
of cardiomyocytes.

Cardiomyocyte renewal
Regeneration capacity varies from organism to organism. 

Zebrafish and newt demonstrate remarkable heart regenera-
tion after 20% amputation of the ventricular apex. Regeneration 
capacity of both organisms has been reported as capability for 
complete restoration over 2-month period (14). Restoration of 
cardiac function has been associated with proliferation of de-
differentiated CMs, characterized by dissolution of sarcomeric 
structures (15). In newts, however, regeneration of heart involves 
blastema formation with accumulation of dedifferentiated cells 
near edge of lesion (16). In mammals, on the other hand, regen-
eration capacity of adult mammalian heart is highly restricted; 
instead, it responds to cardiac injury with scarring (fibrosis). 
However, fate mapping techniques have provided evidence that 
low rates of CM turnover occur following cardiac injury (6). 
Several studies have suggested that myocardial recovery and 
CM renewal after heart injury might originate in stem cells. One 
study of patients with heart transplants indicated that vascular 
cells and small percentage (0.016–0.04%) of newly formed CMs 
were host-derived (7).

Rate of CM renewal has been estimated using a number of 
approaches such as autoradiographic measurements of deoxy-
ribonucleic acid (DNA) synthesis (17). According to Bergmann 
et al. (5) CM turnover rates were estimated at 1% and 0.4% per 
year at the age of 20 and 75 years of age, respectively. On the 
other hand, studies by Anversa group demonstrated that CM 
turnover rates were specified respectively at 7%, 12%, and 32% 
per year at 20, 60, and 100 years of age in men, while higher rates 
were estimated in females (18). Although these studies provided 
further evidence of existence of CM turnover in human heart, 
whether the source of CMs is existing or newly produced CMs 
is not completely understood. To this end, 5-Bromo-2'-deoxyuri-
dine (BrdU), which incorporates into newly synthesized DNA, 
has been used to assess DNA synthesis in CMs. BrdU pulse-
chase analysis and lineage tracing studies in neonatal mouse 
heart regeneration model indicated that origin of newly formed 
CMs is likely to be pre-existing CMs (19).

Neonatal heart regeneration
CM cell cycle and activity change over course of cardiac 

growth. Growth phases of CMs can be categorized developmen-
tally as fetal life, postnatal, and adult period. During fetal life, 
CMs proliferate rapidly. In early postnatal period of heart, murine 
CMs become binucleated around postnatal day 7 to 10. However, 
hypertrophy becomes major form of growth in adult heart. When 
regeneration capacity was analyzed, neonatal and adult hearts 
demonstrated unequal capacity following injury (20). Recent 
studies have demonstrated that neonatal heart could regenerate 
without noticeable fibrosis or cardiac dysfunction after removal 
of up to 15% of the ventricle apex or MI at postnatal day 1 (P1) 
(21). However, at P7, regeneration capacity of the heart appears 
to be lost. Rather, there is adult-like response to heart injury with 
scar formation and cardiac dysfunction. Renewal of CMs that 
occurs following myocardial injury is not sufficient in adult mam-
malian heart. This deficiency has been considered the primary 
limiting factor for adult heart regeneration. Therefore, a number 
of studies have sought means to reactivate intrinsic proliferative 
capacity of adult CMs.

Reactivating cardiomyocyte cell cycle 
with cardiogenic factors
MI causes loss of CMs through apoptosis and necrosis. Ideal 

cardiovascular therapies aim to both reduce CM death and in-
duce proliferation by manipulation of CM cell cycle. Cell cycle 
is a highly regulated, complex process; prominent regulators 
include cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors 
(CDKIs), CDK-activating kinases (CAKs), and retinoblastoma (Rb) 
family. Cyclin/CDK complex is activated through periodic phos-
phorylation by CAKs. In addition, cell cycle is regulated by CDKIs 
including Cip/Kip family (p21Cip1, p27Kip1, p57Kip2) and Ink4 fam-
ily members (p15Ink4b, p16Ink4a, p18Ink4c, p19Ink4d). Cell cycle 
comprises 4 phases: G1, S, G2, and M phases. There is also a Go 
phase when cells exit the cell cycle. Majority of adult CMs are ar-
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Figure 1. Therapeutic stimulation of resident cardiomyocyte cell cycle.
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rested in Go/G1 cell cycle and marked by low proliferation index. 
Even though CDKIs are highly expressed and cell cycle activators 
are decreased in adult CMs, several reports have suggested that 
adult CMs can divide in injured heart (22). Studies have indicated 
that S phase progression in CMs can be induced with immuno-
depletion of p21Cip1 or deletion of CDKI p27Kip1 (23). In addition, 
overexpression or activation of E2F-1, cyclin D2, and cyclin D1 
leads to DNA synthesis and CM mitosis, to some extent (Table 1) 
(19, 23–27, 28–36). Moreover, several studies have reported that 
growth factors and cytokines such as periostin, neuregulin, fibro-
blast growth factor 1, and oncostatin-M, as well as induction of 
Hippo pathway affect CM cell cycle progression (25–27, 37).

Cardiogenic miRNAs and anti-miRs
Micro ribonucleic acid (miRNA) molecules are small, single-

strand, 22-nucleotide-long, non-coding RNAs. The most impor-
tant role of miRNAs is target-specific inhibition of translation. 
This inhibition occurs through base pairing with specific bind-
ing sites located in the 3’ untranslated region (UTR) of specific 
mRNA targets. MicroRNAs have significant role in many cellular 
and biological processes such as cell proliferation, differentia-
tion, and apoptosis, as well as cardiac development. Moreover, 
miRNAs act as dynamic regulators in cardiomyopathy and HF 
(38). In study of mice, CM-specific deletion of miRNA process-
ing-associated genes such as Dicer and Dgcr8 with α-myosin 
heavy chain promoter-driven Cre recombinase and muscle cre-
atine kinase promoter-driven Cre-recombinase (MCK–Cre) led 
to lethality through P0 and P4, respectively (38). When miRNA 
expressions are analyzed in the mammalian heart, miR-1 was 
found to be highly expressed (Table 2) (19, 37, 38–41). miR133 and 
miR-1 deletion in CMs negatively affects CM proliferation and 
differentiation. This effect occurs through modulation of vari-
ous myogenic transcription factors including serum-response 
factor, myocyte-enhancer factor 2, myogenic differentiation 
factor D, and Nkx2.5 (42). An important cluster of miRNAs in 
heart development is miR-17∼92 cluster. Overexpression of miR-
17 leads to growth retardation of various organs including the 
heart. MiR-17∼92 cluster also affects myocardial differentia-
tion of cardiac progenitors (43). In addition, miRNA-dependent 
therapeutic strategies, especially using miR-199a and miR-590, 
induce CM proliferation though stimulation of cell cycle re-entry 
without inducing CM apoptosis (44). On the other hand, miR-15 

family downregulates cell cycle genes and induces cell cycle ar-
rest postnatally (45). miR-15 family not only affects heart regen-
eration, but also regulates mitochondrial functions. For instance, 
overexpression of miR195 inhibits numerous mitochondrial and 
cell cycle genes. All of these effects suggest that repression of 
miR-15 family could lead to delay in CM mitotic arrest with ad-
ministration of antimiRs (44).

Cardiogenic small molecules
Small molecules are chemically defined as low molecular 

weight organic compounds with upper limit of 900 Da. Given that 
many drugs are small molecules, they possess many advan-
tages in terms of diffusion through the cell membrane, flexibility, 
ease of production and storage. In addition, one of the appealing 
characteristics of small molecules is lack of immune response 
against them. Thus, they are more conceivable than recombinant 
proteins or nucleic acid reagents. Small molecules rapidly influ-
ence a variety of cellular compartments in a reversible manner. 
They have been shown to modulate processes such as self-re-
newal, differentiation, and reprogramming mechanisms (46). 

Small molecules demonstrate multiple effects by manipu-
lating target proteins and modulating enzymatic activities and 
signaling pathways. The identification of small molecules has 
been accelerated with improved understanding of their cellu-
lar mechanisms. High throughput screening has been utilized to 
characterize small molecules for a specific phenotype or activity. 
For instance, Sadek et al. (47) characterized activators of cardiac 
phenotype in stem cells (Table 3) (13, 46–50). 5-Azacytidine (5-
AzaC) has been widely used for CM differentiation of various cell 
types including glycolytic cardiac progenitors and Sca-1+ cardi-
ac progenitors. In addition, 5-AzaC and oxytocin-treated Sca-1+ 
cardiac progenitors demonstrated an increase in expression of 
cardiac factors and spontaneous beating in vitro. 6-bromoindiru-
bin-3’-oxime (BIO), defined as an inhibitor of glycogen synthase 
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Table 1. Factors involved in cardiomyocyte proliferation

Factors Examples References

Growth factors Periostin, neuregulin FGF1, (25–27, 28) 
  oncostatin-M

Cell cycle Cdk2, c-myc, cyclin D2, (24, 29–32) 
activators Cyclin A4, cyclin D1, E2F-1

Gene deletion Meis1, antimiR-15, (19, 23, 33–36) 
or inhibition p27Kip1 and p21Cip1

Cdk2 - cyclin-dependent kinase 2; FGF1 - fibroblast growth factor 1; MEIS1 - meis 
homeobox 1

Table 2. miRNAs and antimiRs in cardiac regeneration

miRNA/ Effect on Targets References 
AntimiR cardiomyocytes

miR-199a KO Proliferation Hopx, Homer1c (40)

miR-590 KO Proliferation Hopx, Homer1c (40)

mir-17-92 cluster KO Proliferation PTEN (41)

miR-15 antimiR Proliferation miR-15 (19 
treatment

miR-133 KO Inhibition of Ccnd2, SRF, (38) 
  proliferation Hand2

miR-1 KO Inhibition of Hand2, PTEN (38) 
  proliferation

miR-15 KO Inhibition of Chek1, Arl2 (38) 
  proliferation
Arl2 - adipose-ribosylation factor-like 2; Ccnd2 - cyclin D2; Chek1 - checkpoint kinase 1; 
Hand2 - heart and neural crest derivatives expressed 2; HOP homeobox; KO-knockout; 
miRNA/miR - micro ribonucleic acid; PTEN - phosphatase and tensin homolog; SRF – 
serum response factor
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kinase-3 (GSK-3) pathway, is one of the most important small 
molecules that play a role in CM cell cycle. BIO induces mainte-
nance of self-renewal in embryonic stem cells and proliferation 
of differentiated CMs (48). BIO treatment increases cardiac pro-
liferation of rat neonatal CMs through stimulation of S phase en-
trance in dose-dependent manner, which increases expression 
levels of Ki67, cyclin D1, cyclin A, and also enhances activity of 
ß-Catenin. In search for cardiogenic small molecules, screening 
tests were applied to various heart models and 4 small molecules 
were identified: NBI-31772, an insulin-like growth factor; smooth-
ened agonist (SAG), an activator of the smoothened protein that 
plays a role in Hedgehog signaling pathway; SB203580, an in-
hibitor of p83 mitogen-activated protein kinase; and CHIR99021, a 
GSK-3ß inhibitor. CHIR99021 was also used to generate primitive 
streak cells from human embryonic stem cells that would then 
undergo differentiation into CMs (49). Another small molecule, 
dorsomorphin, increases expression of cardiogenic markers 
such as Nkx2.5, troponin-T and Mhy6 (50). Various members of 
sulfonyl-hydrazone (Shz) family were applied on human mobilized 
peripheral blood mononuclear cells, and Shz-1 and Shz-3 treat-
ments were found to stimulate expression of CM markers such as 
Nkx2.5 in a dose-dependent manner (47). Lastly, skeletal muscle 
stem cells (skeletal myoblasts) were reprogrammed into skeletal 

myoblast-derived induced pluripotent stem (SiPS) cells after 
treatment with RG108, a DNA methyltransferase inhibitor. Trans-
plantation of simulated SiPS from skeletal myoblasts without any 
genetic modification induced repair in damaged myocardium (46).

Approaches to cardiogenic small molecule discovery
Development of therapeutics targeting CM renewal in the 

injured myocardium may be achieved with discovery of CM-spe-
cific cell cycle modulators (Table 4). Thus, recent studies have 
sought to determine cardiogenic small molecules that provide 
reactivation of cell cycle in adult heart. Integration of a variety 
of scientific approaches is required to identify cardiogenic small 
molecules. Candidate small molecules may first be identified us-
ing in silico methods. These methods rely on identification of ac-
tive residues of target protein and utilization of molecular dock-
ing programs. However, crystal structure of target protein must 
be known for in silico screening approaches. Thus, target pro-
teins that are druggable with small molecules may be computa-
tionally screened and selected hits may be further validated with 
in vitro protein or cell- based assays. Microarray and proteomics 
techniques may be utilized during validation and target identifica-
tion. In addition, flow cytometric or fluorescent microscopy tech-
niques may be used in ex-vivo neonatal CM cultures in order to 

Table 3. Cardiogenic small molecules

Small molecules Effect on cardiomyocytes Reference

BIO GSK-3 inhibitor. Induces proliferation of mammalian cardiomyocytes (48)

5-azacytidine Induces cardiomyocyte differentiation of glycolytic cardiac progenitors (13)

SAG, NBI-31772, SB-203580, Drive cardiomyocyte proliferation Reviewed in (49) 
and CHIR99021

Dorsomorphin  Inhibits the BMP signaling and induces cardiomyocyte differentiation in mouse ESCs (50)

sulfonyl-hydrazone Induces cardiac differentiation in M-PBMCs (47)

RG108 Conversion of skeletal muscle stem cells into pluripotent state and use in cardiac regeneration (46)
BIO - 6-bromoindirubin-3’-oxime; BMP - bone morphogenetic proteins; ESCs - embryonic stem cells, GSK-3 - glycogen synthase kinase 3; M-PBMCs - mouse peripheral blood mono-
nuclear cells; SAG - smoothened agonist

Table 4. Approaches to cardiogenic small molecule discovery

Approaches Method Hurdles Advantages

In silico Molecular docking of small Requires crystal structure A large library of druggable small 
  molecules to active site of target protein of targeted protein molecules may be computationally 
    screened for in vitro verification

In vitro Screening of small molecules Requires development A high throughput screening 
  against expressed target protein of in vitro assay may be designed

Ex vivo Screening of small molecules inducing Neonatal proliferating CMs Flow cytometric or fluorescent 
  neonatal rat CM proliferation are used instead of adult CMs microscopy techniques may be 
    used to determine proliferating 
    CMs using markers such as 
    Nkx2.5 and Phospho-H3

In vivo Injection of small molecule Costly. Requires use of Provides in vivo stimulation effect 
  into mouse a large number of animals of injected small molecules 
    toward CM renewal
CM - cardiomyocyte

Turan et al.
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determine effects of small molecules on neonatal CM prolifera-
tion. However, target validations require preclinical studies in an-
imals or humans. Ultimately, identified small molecules could be 
further validated in vivo using neonatal mouse cardiac regenera-
tion model as well as adult myocardial injury models to assess 
effect on CM renewal and improvement of diastolic function.

Conclusion

CM renewal has been documented in adult mammalian 
heart, albeit inadequate for restoration of cardiac function fol-
lowing cardiac injury. Cardiac regeneration in zebrafish, newt, 
and neonatal mouse is associated with reactivation of CM cell 
cycle. Discovery of CM cell cycle modulators provided a new 
platform for development of cardiovascular therapeutics target-
ing CM cell cycle. Studies have demonstrated that CM cell cycle 
could be induced with small molecules. 

Use of small molecules or miRNA to stimulate cardiac cell 
proliferation brings up questions regarding their involvement 
in the induction of tumor formation. It is noteworthy that small 
molecule treatments are designed to be short term; thus, their 
effect will be transient. During this period, if intended CM prolif-
eration achieved, then small molecule treatment could be halted 
to avoid any side effects such as unwanted induction of cellu-
lar proliferation in other cell types or uncontrolled cell growth 
in other tissues. Small molecules must be mutagenic to cause 
cancer formation and tumuorogenicity in any tissue; however, 
it is possible that long-term exposure to such stimulating small 
molecules along with exposure to mutagens could lead to accu-
mulated mutations in various cell types and eventually raise is-
sues of tumor formation. More studies are needed to determine 
timing, dose, and route of administration of small molecules.

De novo CM proliferation and differentiation are thought to 
be a prospect for cardiac regeneration. Manipulations used for 
CM cell cycle modulation have yielded DNA synthesis, karyo-
kinesis and cytokinesis in the heart to some extent. Inducible 
knockout systems used in adult mouse models further demon-
strated that CM cell cycle re-entry may be achieved in adult 
mammalian heart. Discovery of small molecules that trigger and 
promote differentiation of stem cells into CMs and induce CM 
cell cycle re-entry brought further excitement for development 
of therapies targeting MI and HF. Overall, studies have proven 
feasibility of resident CMs and stem cell recruitment following 
therapeutic stimulation in heart regeneration.
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