Anatol J Cardiol 2017; 17: 159-64

Letters to the Editor 161

route does not influence mortality rates (5). We think that this situation may be related to experiences of the heart team and operators.

Secondly, after graft insertion to the left iliac artery, the patient was transferred to the catheterization laboratory immediately. Therefore, the patient underwent anaesthesia stress once. However, this procedure increases infection risk due to graft operation. The rate of graft infections is expected to be low (6).

In conclusion, we presented an alternative technique for patients with an unsuitable anatomy. Improvements and further trials are needed to compare different routes.

Ali Doğan

Departments of Cardiology, Faculty of Medicine, Gaziosmanpasa Hospital, İstanbul Yeni Yüzyıl University; İstanbul-*Turkey*

References

- Doğan A, Özdemir E, Mansuroğlu D, Sever K, Saltan Y, Özdemir B, et al. Transcatheter aortic valve implantation through extra-anatomic iliac graft in a patient with unsuitable iliofemoral and subclavian anatomy. Anatol J Cardiol 2016; 16: 813-4. Crossref
- Fröhlich GM, Baxter PD, Malkin CJ, Scott DJ, Moat NE, Hildick-Smith D, et al. Comparative Survival After Transapical, Direct Aortic, and Subclavian Transcatheter Aortic Valve Implantation (Data from the UK TAVI Registry). Am J Cardiol 2015; 116: 1555-9. Crossref
- Biancari F, Rosato S, D'Errigo P, Ranucci M, Onorati F, Barbanti M, et al. Immediate and Intermediate Outcome After Transapical Versus Transfemoral Transcatheter Aortic Valve Replacement. Am J Cardiol 2016; 117: 245-51. Crossref
- Koifman E, Magalhaes M, Kiramijyan S, Escarcega RO, Didier R, Torguson R, et al. Impact of transfemoral versus transapical access on mortality among patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Cardiovasc Revasc Med 2016; 17: 318-21. Crossref
- Murashita T, Greason KL, Pochettino A, Sandhu GS, Nkomo VT, Bresnahan JF, et al. Clinical Outcomes After Transapical and Transfemoral Transcatheter Aortic Valve Insertion: An Evolving Experience. Ann Thorac Surg 2016; 102: 56-61. Crossref
- Vogel TR, Symons R, Flum DR. The incidence and factors associated with graft infection after aortic aneurysm repair. J Vasc Surg 2008; 47: 264-9. Crossref

Address for Correspondence: Dr. Ali Doğan

İstanbul Yeni Yüzyıl Üniversitesi Tıp Fakültesi, Gaziosmanpaşa Hastanesi Kardiyoloji Bölümü, Gaziosmanpaşa, İstanbul-*Türkiye* E-mail: drdali@hotmail.com

Evaluation of heart rate recovery index in heavy smokers

To the Editor,

I read the article entitled "Evaluation of heart rate recovery index in heavy smokers" by Erat et al. (1), which has been recently published in Anatolian Journal of Cardiology 2016; 16: 667-72, with great interest. The authors have successfully mani-

fested a statistically significant relationship between smoking and the heart rate recovery index (HRRI) even though the study population was small in number.

HRRI, which is indicator of the autonomic nervous system (ANS), is not routinely evaluated in daily clinical practice even though it is an independent risk factor for cardiovascular (CV) diseases. Several studies have shown that HRRI plays an important role in all-cause mortality and CV events (2, 3). The authors have done a good job by investigating the relationship between HRRI and smoking because the potential harmful effects of smoking on the autonomic nervous system apart from those on the vascular biology needed to be proved. HRRI calculation is a simple and beneficial way to evaluate autonomic nervous system function. Therefore, this trial will help us understand the harmful effects of smoking on ANS using HRRI.

To our knowledge, HRRI is calculated by extracting the heart rate during the 1st, 2nd, 3rd, and 5th minutes after finalizing the test from the patient's maximum heart rate during exercise. However, the authors have described HRRI in the "Introduction" section as being calculated by extracting the maximum heart rate from the heart rate in the 1st, 2nd, 3rd, and 5th minutes in the post-exercise period. In case of this type calculation, the study results will change, and it will forward us wrongly. I wonder if it was miswritten or miscalculated in this article. I wanted to emphasize on the importance of right usage of medical formulas.

Fatih Kahraman

Clinic of Cardiology, Düzce Atatürk State Hospital; Düzce-Turkey

References

- Erat M, Doğan M, Sunman H, Asarcıklı LD, Efe T, Bilgin M, et al. Evaluation of heart rate recovery index in heavy smokers. Anatol J Cardiol 2016; 16: 667-72.
- Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS. Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol 2003; 42: 831-8. Crossref
- Morshedi-Meibodi A, Larson MG, Levy D, O'Donnell CJ, Vasan RS. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). Am J Cardiol 2002; 90: 848-52. Crossref

Address for Correspondence: Dr. Fatih Kahraman

Koçyazı Mah., 2296. Sok., Moda Evleri, E Blok, No: 11 Düzce-*Türkiye* E-mail: drfkahraman@hotmail.com

©Copyright 2017 by Turkish Society of Cardiology - Available online at www.anatolicardiol.com

DOI:10.14744/AnatolJCardiol.2017.7599

Author's Reply

To the Editor,

We thank the author for the great interest in our study entitled "Evaluation of heart rate recovery index in heavy smokers"