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INTRODUCTION

Nanotechnology is a novel method of producing and manipulating substance at 
the molecular scale, which can provide for more efficiently functioning mechan-
ical, chemical, and biological components and bring great value to the develop-
ment of medicine (1). The term “nano,” first presented by the famous material sci-
entist Richard P. Feynman (2) in 1959, is a unit used to describe 10−9 of parameter 
in the microcosm. Over the past few years, nanotechnology has sparked intense 
interest among scientists and has been used to overcome biomedical difficulties 
and treat various diseases such as cancers (3), infectious diseases (4), and cardio-
vascular diseases (5). Nanoparticles, nano-carriers or nano-materials, defined as 
substances with a size of 1 to 100 nm, have specific functions at the cellular, atomic 
and molecular levels and are widely used in the fields of diagnosis and treatment 
of diseases (6). Nanoparticles or nano-carriers exhibit many advantages, includ-
ing excellent drug stability and solubility, prolonged half-life of drug systemic cir-
culation, stable and sustained drug-releasing rate, and lower frequency of drug 
administration, thus minimizing side effects of drug (6). As a result, they have be-
come a promising alternative strategy to improve drug efficiency and minimize 
side effects in the treatment of diseases. 

Infective endocarditis (IE) is an infectious disease defined by an infection of the 
heart valve and the endocardial surface, such as a prosthetic heart valve or an 
indwelling cardiac device (7). IE remains an infectious and life-threatening dis-
ease with an incidence of approximately 3–10 per 100,000 person-years (8, 9). 
With more prosthetic valve replacements or cardiac electronic device implanta-
tions performed for patients who suffer from heart valve diseases or arrhythmia, 
the incidence of IE is rising (8). IE is still a challenging disease bringing stupendous 
health and economic burden to the world.

With IE recognized as an infectious disease characterized by biofilm formation, 
the core of antimicrobial therapy for IE has focused on eradicating biofilm and 
drug-resistant bacteria. Nanoparticles, working as effectively functioning drugs 
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or novel drug delivery systems, are promising strategies for 
treating intractable and chronic infectious diseases, such as 
IE. For example, Omri et al. (10) developed nanocarriers en-
capsulating tobramycin to treat rats infected with Pseudo-
monas aeruginosa (P. aeruginosa). An in vivo study showed 
liposome-encapsulated tobramycin exhibited high pulmo-
nary concentration and prolonged pulmonary retention than 
free tobramycin in the infected rats, which indicated that a 
nano-carrier had the potential in improving antibiotic avail-
ability. In this review, we provide a comprehensive descrip-
tion of the relationship between IE and biofilm and discuss 
the latest advances in nanoparticles in these fields.

Infective endocarditis, an infectious disease related to bio-
film formation
The healthy cardiac endothelium has the ability to resist 
frequent bacteremia. However, when the endocardium is 
damaged by factors, such as rheumatic valvulitis, valve scle-
rosis, and direct bacterial activity; IE occurs with a series of 
pathological changes in the endocardium (11). In general, the 
typical pathological change observed in endocarditis is the 
occurrence of vegetation, which in essence is composed of 
microorganisms combined with platelet-rich thrombi and in-
flammatory leucocytes (7, 12, 13). The pathogenesis of endo-
carditis is described below. When the heart valve is injured, 
the injured endocardial surface promotes platelets and fibrin 
to form thrombi at the injury site. The microorganisms then 
accumulate and adhere to the thrombus, followed by the 
formation of microcolonies. Finally, with the accumulation of 
microcolonies, the vegetation biofilm becomes mature and 
causes embolization if it detaches from the biofilm (14). 

Vegetation biofilm formation on the heart valve exerts a sig-
nificant and noticeable effect on damage to the body. Vege-
tation biofilms physically affect the opening or closing of the 
heart valve, and then blood flow regurgitation or turbulence 
occurs (12, 14). However, general antibiotic therapy may not 
be able to destroy all the microorganisms that continuous-
ly detach from the vegetation biofilms (12, 14). As a result, 
more severe complications, such as heart failure and general 
infection, occur. Moreover, the dislodged biofilm or throm-
bus on the heart valve reaches the fine arteries through the 
blood circulation, leading to emboli in the peripheral circula-
tion (12). 

Clinicians did not recognize the bacterial growth mode as a 
“biofilm” for several years. In 1987, Marrie et al. (15) studied 
bacterial vegetation involving the aortic valves of 6 patients 
using microscopy and observed myriad microorganisms 
embedded in the matrix, indicating the presence of biofilm 

structures in endocarditis, although bacteria were negative 
upon culture. In essence, IE is an infectious disease associ-
ated with microorganism biofilm formation, and microor-
ganisms directly cause tissue destruction and subsequent 
entry into deep structures of heart valve (13, 16). Several 
studies have shown that IE is associated with the formation 
of bacterial biofilms (17, 18). Bosio et al. (17) reported a clin-
ical case of a patient with IE involving a porcine prosthetic 
aortic valve. Although vegetation or perforations were not 
detected in the valve, microscopic findings of histiocyte for-
mation were observed along the endocardial surface of the 
valve. The presence of Mycobacterium fortuitum, a biofilm 
formation-associated mycobacterium, was finally detect-
ed in blood culture. Similarly, one case report documented 
the detection of biofilm formation associated with Micro-
coccus luteus on the prosthetic valves from patients with IE 
implanted with prosthetic valves; the Micrococcus species 
are usually considered contaminants of the skin and muco-
sal membranes, which are capable of creating biofilms in im-
plantation materials and thus cause infectious disease (18).

Most of the pathogenic bacteria that cause IE are involved in 
biofilm formation, such as Staphylococcus (19), Streptococ-
cus (20), and Enterococcus species (21). Moreover, the species 
isolated from patients diagnosed with IE have the ability to 
create biofilms in vitro (22-24). IE differs from other infec-
tious diseases because it is associated with biofilm formation 
on the endocardium. Parsek and Singh (14) summarized the 
features of clinical biofilm infection, including infecting mi-
crobes are always capable of attaching to the surface of the 
infected tissue and proliferating to form microcolonies; cell 
clusters or microcolonies encased in an extracellular matrix 
in the biofilm can be detected using microcopy; the infection 
is generally limited to a specific site in some cases and may 
undergo secondary dissemination; and biofilm is difficult to 
eradicate with antibiotics, although microbes in the plank-
tonic state are susceptible. The microbes in a biofilm can 
serve as a reservoir and cause continuous infection (14). All 
these criteria are fulfilled in patients with IE.

Mechanisms of drug resistance in biofilms of infective endo-
carditis

Biofilm as a permeation barrier
A biofilm is composed of complex microcolonies of micro-
organisms combined with extracellular matrix (ECM) that is 
composed of polysaccharides, extracellular DNA (eDNA), 
and proteins, forming a gelatinous matrix that contributes 
to the adherence of biofilm to the damaged surface of the 
endocardium and the protection of microorganisms in the 
biofilm (22). Several studies have shown that barrier pen-
etration plays a role in biofilm-associated drug resistance. 
The biofilm structures of Staphylococcus aureus (S. aureus) 
and Staphylococcus epidermidis (S. epidermidis) are capable 
of hindering the penetration of some antibiotics such as ox-
acillin, cefotaxime, and vancomycin; thus reducing the accu-
mulation of bactericidal antibiotics in the entire biofilm (25). 
Similarly, other drugs, including fluconazole and amphoter-
icin B, diffuse very slowly through mixed-species biofilms of 
Candida albicans and S. epidermidis (26). Biofilm may func-
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tion as a barrier against antibiotics, which is related to drug 
resistance. However, the theory of resistance penetration 
does not completely explain the mechanisms of biofilm resis-
tance to antibiotics. Biofilms appear to permit penetration of 
certain antibiotics. For instance, erythromycin penetrates S. 
epidermidis biofilms without completely killing the microbes 
(27). In addition, the function and effectiveness of antibiot-
ics transport through biofilms are affected by components 
of the extracellular matrix (ECM), which has structural and 
protective functions (28). In studies on drug resistance in P. 
aeruginosa, alginate (29) and cyclic glucan (30) were shown 
to increase resistance to antimicrobials. Alginate contrib-
utes to increased microcolony formation and the formation 
of a thicker protective barrier (29). Cyclic glucan was proven 
to physically interact with cationic antibiotics such as ami-
noglycosides, thus protecting them from reaching microco-
lonies inside biofilm (30).

Complex diversity of biofilm environments
Biofilms provide a complex and diverse microenvironment 
with gradients of dispersion of nutrients, oxygen, pH, and 
metabolic waste. Oxygen and nutrients appear to be deplet-
ed by the cells close to the biofilm surface before they pene-
trate deep into the biofilm. Therefore, in the deeper cell lay-
er, different gradients of oxygen and nutrients in the biofilm 
environment induce various physiological states of microor-
ganisms (28). For example, an environment rich in oxygen and 
nutrients induces an aerobic state and fast growth, where-
as a lack of oxygen and nutrients induce fermentation, slow 
growth, and dormant cells (28). In fact, the heterogeneity of 
the physiological state of cells is associated with tolerance 
to several antibiotics. Hypoxic conditions and nutrient dis-
persion reduce metabolic activity and shift cells in biofilms 
into a stationary phase-like state, thus conferring tolerance 
to antimicrobials that are most effective against actively 
growing bacteria (31). The biofilm is composed of different 
subpopulations with different susceptibilities to antibiotics, 
suggesting that biofilms containing different subpopulations 
are not likely to be susceptible to only one antibiotic. In the 
biofilm of P. aeruginosa, the cell population differentiates 
into different subpopulations with varying susceptibility to 
antibiotics (32). Cap-forming subpopulations are resistant to 
membrane-targeted antimicrobials, such as the cyclic cat-
ionic peptide mucin, whereas stem-forming subpopulations 
are sensitive to membrane-targeted antimicrobials (32). Re-
searchers have postulated that biofilm resistance may result 
from poor susceptibility of subpopulations to antibiotics.

Transport proteins in the biofilm
The mechanism of recognizing and transporting substances 
through the bacterial membrane is responsible for antibiot-
ic resistance. The proteins in bacterial membranes, such as 
efflux pumps and porins, function as carriers that recognize 
and transport substances, including antibiotics through the 
membrane (28). Efflux pumps, which are classified into six 
families, transport antibiotics out of the cell and participate 
in the extrusion of several types of antibiotics, such as acri-
flavine, chlorhexidine, and erythromycin (28, 33, 34). For ex-
ample, the MacAB pump, a member of the ABC family, was 
identified to be involved in macrolide-specific resistance 

(33). The EmmdR pump, a member of the MATE family, is ca-
pable of pumping quinolones out of Enterobacter cloacae 
(35). Table 1 summarizes some efflux pumps from the six fam-
ilies described below.

Porins are the trimers of transmembrane β-barrels with wa-
ter-filled channels for substance transportation, and they 
control the penetration of antibiotics through biofilms by 
permitting the selective small transport of hydrophilic mole-
cules (28). Therefore, the deletion or mutation of porins may 
lead to multidrug resistance. For example, the mutation of 
porins such as OmpK36 in Klebsiella pneumonia is associated 
with nonenzymatic antibiotic resistance as the gene coding 
for the porin OmpK36 was downregulated in 56 extensively 
drug-resistant Klebsiella pneumonia samples (45).

Quorum sensing, horizontal gene transfer, and mutation in 
biofilms
Biofilms are considered a cooperative and commensal mi-
crobial group where microbial populations are surrounded by 
self-produced extracellular matrix and communicate with 
one another (50). Quorum sensing (QS) is a regulatory mecha-
nism by which bacteria communicate through autoinducers, 
and QS contributes to biofilm recalcitrance (28). Autoinduc-
ers accumulating in the biofilm environment activate gene 
transcription. For instance, increased levels of autoinducers 
upregulate genes encoding some proteins involved in biofilm 

Anatol J Cardiol 2022; 26: 90-9 Tong et al. A promising therapeutic strategy for infective endocarditis 

92

Table 1. Summary of some efflux pumps and their substrates
Families of efflux 
pumps

Names 
of efflux 

pumps

Pathogens Transport 
substrates

Multidrug and 
oxin extrusion 
(MATE)

YdhE (36) E. coli, Kanamycin, 
criflavin

PmpM (37) P. 
aeruginosa

Fluoroquinolones, 
fradiomycin, 

chlorhexidine
AbeM (38) A. 

baumannii
Norfloxacin, 
ciprofloxacin

Small multidrug 
resistance 
(SMDR), 

EmrE (39) E. coli, Acriflavine

Smr/QacC 
(40)

S. aureus Acriflavine

Major facilitator 
(MF), 

SdrM (41) S. aureus Norfloxacin, 
acriflavine

ATP-binding 
cassette (ABC), 

Cdr1p, 
Cdr2p (42)

C. albicans Terbinafine

Resistance 
nodulation 
division (RND)

acrAB (43) P. salmonis Florfenicol

Proteobacterial 
antimicrobial 
compound-efflux 
(PACE) families

AceI (44) A. 
baumannii

Chlorhexidine

A. baumannii - Acinetobacter baumannii; C. albicans - Candida 
albicans; E. coli - Escherichia coli; P. aeruginosa - Pseudomonas 
aeruginosa; P. salmonis - Piscirickettsia salmonis; S. aureus - 
Staphylococcus aureus



development and virulence factors (28). In P. aeruginosa, QS 
is associated with biofilms. Davies et al. (47) studied the rela-
tionship between QS and biofilm formation in P. aeruginosa 
and found that LasI/LasR, the QS system, was necessary for 
the subsequent biofilm differentiation process. Therefore, 
the inhibition of QS circuits has been considered to be a po-
tential strategy against biofilms. Virulence factors and bio-
film formation can be inhibited by blocking QS (48).

Horizontal gene transfer (HGT), including conjugation, trans-
formation, and transduction, plays an important role in the 
exchange of antimicrobial resistance (AMR) genes among 
bacteria. Biofilms provide a complex environment consid-
ered as a large reservoir of various resistance genes because 
AMR genes are disseminated among bacteria in biofilms (49). 
As a result, bacteria acquire the ability to adapt to changing 
environments in the presence of antibiotics through HGT. In 
biofilms, HGT is a potentially important factor leading to ge-
netic diversity and multidrug resistance. The occurrence rate 
of HGT among bacteria appears higher in biofilms than in 
free-living bacteria. In S. aureus, the conjugation frequencies 
or transfer rate of the conjugative plasmid pGO1 in biofilms is 
higher (up to 16000-fold) than that in planktonic cells (50). 

Mutations in the bacterial genome are also associated with 
AMR (51). In biofilms from a chronic infection, mutations are 
common. The hypermutator phenotype of Pseudomonas in 
biofilms has been detected in patients who suffer from cystic 
fibrosis with chronic infections (52). Other bacteria such as S. 
aureus (53) and Haemophilus influenza (54) from patients 
with cystic fibrosis have also been reported to exhibit hyper-
mutability. The resistance of biofilms to antibiotics is linked 
to gene mutations. For example, Fraancisella tularensis (F. 
tularensis) SCHU S4 acquired resistance to fluoroquinolone 
(FQ) because of the deletion of gene FupA that encodes a 
kind of protein required for iron uptake and bacterial viru-
lence in F. tularensis (55).

Main challenges in the antimicrobial therapy of infective  
endocarditis
Drug resistance of biofilm in IE plays an important role in the 
antibiotic therapy, which may account for the failure of an-
timicrobial therapy. Microorganisms isolated from biofilms 
survive and multiply even when exposed to high concentra-
tions of antibiotics (23) and exhibit a high level of resistance 
to antibiotics (56, 57). Di Domenico et al. (57) surgically ob-
tained heart valve specimens from patients with IE and S. 
aureus, Enterococcus, and Streptococcus were isolated and 
identified in vitro. Clinical biofilm ring tests showed that S. 
aureus, Enterococcus, and Streptococcus were capable of 
producing biofilms in vitro, and these microbial isolates were 
resistant to most antimicrobial drugs such as ceftriaxone, 
gentamicin, levofloxacin, and vancomycin (57). 

Effective antibiotic therapy for IE usually requires a large 
dose and a prolonged period of antibiotic administrations, 
usually several antibiotics in combination (9). Therefore, the 
selection of antibiotics to which the pathogens are sensitive 
and the period of antibiotic therapy seem very important in 
the management of IE because prolonged antibiotic therapy 
may increase the risk and toxicity to patients (9). High-dose 

aminoglycosides, such as gentamicin, administered over a 
long period as treatment IE are nephrotoxic and ototoxic (58, 
59). These side effects undoubtedly are challenging for clini-
cians choosing antibiotics and course of treatment. There-
fore, the most promising strategy for IE treatment is to tar-
get biofilms on the endocardium, inhibit bacterial adhesion, 
and disrupt bacterial architecture. Antimicrobial nanoparti-
cles or nanocarriers have potential to decrease the need for 
repeated doses of antibiotics to overcome ineffectiveness 
and increase drug bioavailability, thus decreasing toxicity 
and side effects (60). 

Development of antimicrobial nanoparticles
Currently, biofilm formation is considered as a point of drug 
resistance of chronic infection. Several diseases such as IE, 

Tong et al. A promising therapeutic strategy for infective endocarditis  Anatol J Cardiol 2022; 26: 90-9

93

Table 2. Some nanoparticles used against bactera in biofilm

Drugs/nanoparticles
Targeted 

pathogens Years
Author/

reference
Metallic nanoparticles
ZnO nanoparticle S. 

pneumoniae
2018 Bhattacharyya 

et al. (70)
Copper oxide 
nanoparticle

S. lentus 2019 Padmavathi et 
al. (71)

ZnO nanoparticle C. tropicalis 2017 Jothiprakasam 
et al. (72)

Fe3O4 nanoparticle Candida 2018 Salari et al. (73)
Selenium nanoparticle S. aureus,  

P. aeruginosa,  
P. mirabilis

2015 Shakibaie et al. 
(74)

Silver nanoparticle E. coli, 
P. aeruginosa,

2020 Singh et al. (63)

Silver nanoparticle Pseudomonas 2016 Vyshnava et al. 
(75)

Composite 
nanoparticle
Biguanide-
derived polymeric 
nanoparticle

MRSA 2020 Li et al. (76)

Zinc oxide 
nanoparticle  coated 
by chitosan-linoleic 
acid

 C. albicans 2017 Barad et al. (77)

Silver nanoparticles 
filled with 
polydimethylsiloxane

Vibrionaceae 2016 Yang et al. (78)

Chitosan-coated iron 
oxide nanoparticle

S. aureus 2016 Shi et al. (79)

Chitosan nanoparticle 
loading cellobiose 
dehydrogenase and 
deoxyribonuclease I

C. albicans,  
S. aureus

2020 Tan et al. (80)

Cationic chitosan-
propolis nanoparticle

S. epidermidis 2019 Ong et al. (81)

Silk fibroin-silver 
nanoparticle

MRSA 2013 Fei et al. (82)

C. albicans - Candida albicans; C. tropicalis - Candida tropicalis; E. coli 
- Escherichia coli; MRSA - methicillin-resistant Staphylococcus aureus; 
P. aeruginosa - Pseudomonas aeruginosa; P. salmonis - Piscirickettsia 
salmonis; P. mirabilis - Proteus mirabilis; S. aureus - Staphylococcus 
aureus; S. lentus - Staphylococcus lentus; S. epidermidis - 
Staphylococcus epidermidis



prosthetic implantation infection, and periodontitis are con-
sidered associated with biofilm formation (61). Treatment of 
biofilm-related diseases always require large dose and rapid 
frequency of drug administrations, thus producing side ef-
fects more than therapeutic effects. With the development 
of nanotechnology, nanoparticles and nanocarriers have 
caught the attention of scientists and have been used since 
1990s (62). Several kinds of nanoparticles such as metallic 
nanoparticles and synthetic composite nanoparticles are 
used against biofilms (63-65). 

Nanoparticles have been a great approach to combat 
drug-resistant microbes and for treatment of chronic and 
intractable infective diseases, such as tuberculosis (TB) be-
cause of their excellent and unique antimicrobial activity and 
function as drug delivery systems (66-68). The challenges of 
chronic and intractable infective disease remain the multi-
drug resistance and side effects of drugs. Traditional antibi-
otics may be limited owing to their poor stability and solubil-
ity in blood, and the short half-life of drugs generally leads to 
increased frequency of drug administration and ensuing side 
effects. Mupirocin is an antibiotic with a unique mode of ac-
tion. Because of its rapid elimination and poor solubility, the 
therapeutic use of mupirocin is limited to topical administra-
tion (69). Nanoparticles have been used as novel drug deliv-
ery systems to overcome these limitations. An experimental 
study on encapsulating mupirocin into nano-liposome was 
conducted and found that nano-mupirocin increased the 
half-life of mupirocin and enhanced therapeutic efficiency 
in treating mice necrotizing fasciitis (69). Table 2 summarizes 
some nanoparticles used against biofilms in recent years.

Mechanism of action of antimicrobial nanoparticles 

Metallic antimicrobial nanoparticles damage the membrane, 
thus increasing permeability
Some nanoparticles directly interact with the bacterial cell 
wall and disturb the normal function of cells, thus killing mi-
croorganisms and inhibiting biofilm formation. Several me-
tallic antimicrobial nanoparticles (NPs) such as silver NPs 
(AgNPs) (83), gold NPs (84), ZnO NPs (85, 86), and copper ox-
ide NPs (71) inhibit the development of biofilms. For example, 
AgNPs is known to eradicate the biofilms of Escherichia coli 
(E. coli). The fatty acid content of E. coli cells is significantly 
decreased, suggesting that the integrity of the bacterial cell 
membrane is damaged by the AgNPs. In addition, membrane 
puncturing and cell lysis can be observed using electron mi-
croscopy (87). 

The metallic antimicrobial nanoparticles are capable of in-
hibiting biofilm formation and killing bacteria through sever-
al mechanisms. Some metallic nanoparticles such as AgNPs 
and ZnO NPs, damage the membrane, thus increasing mem-
brane permeability. AgNPs bind to, destabilize, and disrupt 
the cell membrane (88). A previous study showed that Zn+ 
from ZnO NPs interacts with the cell membrane, leading to 
reactive oxygen species (ROS) production and membrane 
disorganization (89). Metallic antimicrobial nanoparticles in-
hibit protein expressions and affect cellular functions. For ex-
ample, Ag+ is capable of interacting with the ribosome band, 
inhibiting the expression of important enzymes and proteins 

required for ATP production (90). ZnO NPs inhibit cytosolic 
protein expression and the growth of Bacillus subtilis (B. sub-
tilis) cell, thus affecting viability and biofilm formation (85).

Nanoparticles carrying multiple antimicrobial agents as 
novel drug delivery systems exert synergistic effects
Nanocarriers are transports used to function as novel drug 
delivery systems for several types of antibiotics, exerting a 
synergistic effect (66). The antimicrobial activity of nano-
carriers mainly relies on the high surface area to volume ra-
tio and the properties of various components they deliver 
(91). Nanoparticle-based drug delivery systems are capable 
of improving solubility and stability of drugs and prolonging 
drug circulation. Nanocarriers engineered to be activated by 
stimulating factors such as pH and ligands provide sustained 
and targeted drug release at the site of infection. In addition, 
nanoparticle-based drugs have been administrated in an ef-
fective manner to minimize the administration frequency 
and side effects, thus improving patient compliance (91-94).

Nanocarriers packaging multiple antimicrobial agents have 
significantly increased antimicrobial activity because they 
depend on the overall and synergistic functions of its active 
components (94-97). All components of nanoparticles ex-
hibit synergistic actions, thereby improving the therapeutic 
value. Because few bacteria are resistant to all components 
of composite nanoparticles, composite nanoparticles are 
valuable treatments for resistant bacteria. Ruby (95) found 
that copper oxide nanoparticles synergistically combined 
with amoxiclav exhibit a significantly improved antimicrobial 
activity as the minimum inhibitory concentration of amoxi-
clav against Proteus mirabilis (P. mirabilis) and S. aureus was 
significantly reduced. Likewise, the efficacy of polymyxin 
B combined with AgNPs against P. aeruginosa biofilms was 
improved several times compared with unaided polymyxin B 
(98). 

Nanoparticles that increase uptake of the drug inside  
microbes
Two types of nanoparticles, liposomes and dendrimers, in-
crease the uptake of a drug inside microbes (66). The lipo-
some is a spherical and loadable vesicle with a membrane 
composed of a lipid bilayer that is capable of carrying con-
centrated drugs and easily fusing with the cell membrane 
(66, 99). Therefore, antibiotics are easily delivered and re-
leased inside microbial cells, and the intracellular concen-
tration of antibiotics would be increased owing to the fusion 
mechanism of liposomes. The intracellular concentration of 
antibiotics is increased, thus decreasing the requirement for 
high-dose antibiotics (100, 101). Neutral liposomes loaded 
with gentamicin improve the efficiency of antimicrobials, 
killing P. aeruginosa and Klebsiella oxytoca (K. oxytoca) at 
significantly lower concentrations than free gentamicin. The 
increased antibiotic activity is because of the fusion mech-
anism, namely the increased delivery of gentamicin to the 
bacterial cytoplasm (101).

Dendrimers are polymers that damage the cell membrane. 
The surface of dendrimers is positively charged and ca-
pable of binding to the negatively charged microbial cell 
membrane and increasing membrane permeability (66, 102). 
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Therefore, this mechanism enables a larger dose of antibiot-
ics to penetrate microbial cells easily, thereby increasing the 
uptake of the drug into resistant bacteria (66). Backlund et 
al. (102) studied the efficiency of nitric oxide (NO) releasing 
dendrimers against Streptococcus biofilms. The dendrim-
er with a positively charged surface bound to the bacterial 
membrane though electrostatic interactions. The bacteri-
cidal efficacy was improved at pH 6.4 owing to the increased 
charge of the scaffold surface, promoting a more efficient 
interaction between the dendrimer and bacteria and dam-
aging the cell membrane more effectively (102).

Nanoparticles that digest extracellular polymeric secre-
tions, thus inhibiting biofilm formation
Some nanoparticles are designed and synthesized to di-
gest the extracellular polymeric secretions (EPS) of biofilms. 
Nanoparticles loaded with enzymes such as pyruvate dehy-
drogenase and deoxyribonuclease (DNase) acquire the abil-
ity to digest components of the EPS of biofilms, thus disinte-
grating EPS and inhibiting biofilm formation. For example, 
Baelo et al. (103) developed nanoparticles combining cip-
rofloxacin with DNase I to eradicate P. aeruginosa biofilms. 
DNase I was capable of digesting eDNA, disassembling the 
structure of the bacterial ECM. As a result, the nanoparticles 
functionalized with ciprofloxacin and DNase I successfully 
prevented biofilm formation (103). Likewise, another com-
posite nanoparticle delivering both oxacillin (Oxa) and DNase 
I (CSNP-DNase-Oxa) exhibits enhanced antibiofilm activity 
against S. aureus compared with Oxa-loaded nanoparticles 
without DNase and free Oxa (104). This enhanced antibio-
film activity is because of the DNase I, which disaggregates 
eDNA, thus inhibiting biofilm formation and eradicating ma-
ture biofilm more effectively (104).

Nanoparticles that precisely direct antimicrobial agents to 
the site of infection
Nanoparticles, working as drug delivery systems, release 
higher doses of antibiotics directly at the infected site and 
target the antimicrobial agents of biofilms in several ways 
(66). Targeted nanocarriers are activated by certain stimu-
lating factors, such as ROS, low pH, or ligands in specific en-
vironments to exert directly on the biofilms (66). For exam-
ple, Naha et al. (105) synthesized pH-responsive nanozymes, 
namely dextran-coated iron oxide nanoparticles. At a more 
acidic pH of the biofilm, for example 4.5, the nanozymes ex-
hibited stronger catalytic activities, followed by the genera-
tion of large amounts of ROS that targeted the biofilm with 
high specificity in vivo. Likewise, Kalhapure et al. (106) de-
veloped pH-responsive solid lipid nanoparticles (SLNs) that 
were able to release and deliver vancomycin base (VM-FB) 
in an acidic environment. The pH-responsive SLNs released 
VM-FB significantly faster and exhibited an enhanced anti-
microbial activity against methicillin-susceptible and resis-
tant Staphylococcus aureus (MSSA and MRSA) respectively 
at pH 6.5 than at pH 7.4 (106). Similarly, pH-responsive lip-
id-dendrimer hybrid nanoparticles (LDH-NPs) delivering 
vancomycin (VCM) were developed by Maji et al. (107) and 
exhibited an increased release of VCM at the site of infection 
at pH 6.0.  

Nanoparticles with the advantage of combating intracellu-
lar infection
Nanoparticles have the advantage of overcoming intracellu-
lar infection (108). Nanoparticles, such as liposomes, are easily 
phagocytosed by host phagocytes, thus increasing the concen-
tration of intracellular antibiotics and killing the intracellular 
pathogens before they develop drug resistance (66, 109). Huang 
et al. (109) found that oleic acid (OA) loaded liposomes (Li-
poOAs) rapidly and easily fused with the bacterial membranes, 
contributing to transport inside cells. Therefore, LipoOA sig-
nificantly increased the intracellular concentration and the po-
tency of OA against MRSA than free OA (109). Scolari et al. (110) 
developed a chitosan and tween 80 (the neutral surfactant) 
decorated alginate nanoparticle encapsulating rifampicin and 
antioxidant ascorbic acid, which were mainly taken up by lung 
macrophages. Therefore, these nanoparticles are an important 
strategy to treat intracellular respiratory infections.

Recent development of nanoparticles or nanocarriers for 
treatment and prevention of infective endocarditis
The common pathogen of IE includes Viridans streptococci 
and S. aureus. At present, several antimicrobial nanoparticles 
have been developed against S. aureus biofilm and showed 
excellent antimicrobial activity. Mihu et al. (111) prepared sus-
tained nitric oxide-releasing nanoparticles (NO-nanopar-
ticles) against S. aureus biofilm formation to treat a rat 
central venous catheter (CVC) infection. NO released from 
NO-nanoparticles can kill bacteria by inactivating enzymes 
responsible for replication and reacting with oxygen to pro-
duce toxic species, and the NO-nanoparticles considerably 
and significantly reduced thicknesses and bacterial numbers 
in S. aureus biofilm compared to those in the control biofilm. 
This study showed that this kind nanoparticle was a promising 
way of treating S. aureus infections, such as IE (111). In addi-
tion, there is another study (69) on nano-mupirocin developed 
to enable parenteral activity by encapsulating nano-mupiro-
cin in nano-liposome for the treatment of rabbit endocarditis. 
The encapsulation of nano-mupirocin into nano-liposome 
increased and prolonged mupirocin plasma level, whereas 
the free mupirocin showed a rapid elimination after adminis-
tration. Nano-mupirocin treated animals had a significantly 
higher survival rate than those treated with free mupirocin 
(57% survival for nano-mupirocin vs. 0 for free mupirocin). 
The nano-mupirocin showed a better curative effect than 
free-mupirocin in the management of IE (69). Nanoparticles 
or nanomaterial have been also used to prevent prosthetic 
valve endocarditis. Antimicrobial nanoparticles have been re-
ported to be applied to mechanical valves to prevent infection 
of prosthetic heart valves after heart valve replacement. An-
gelina et al. (112) coated the surface of pyrolyric carbon (PyC) 
on a prosthetic heart valve with a thin film of AgNPs to inhibit 
bacterial colonization. AgNPs are capable of interfering with 
the cell membrane and affecting bacterial viability. Further-
more, roughness at the nanoscale owing to the coating of Ag-
NPs on the PyC heart valve surface contributes to preventing 
bacterial adherence to the surface (112). Therefore, nanopar-
ticles with antimicrobial properties are capable of inhibiting 
bacterial growth, which shows a promising future for the use 
of nanoparticles for IE and other chronic infectious diseases.
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However, many challenges in the application of antimicrobi-
al nanoparticles in IE remain. Biocompatibility and safety of 
nanoparticles should be taken into consideration, although 
nanoparticles or nanocarriers provide hope for the treatment 
of various diseases (113). According to several studies, some 
nanoparticles are toxic or even carcinogenic (114-116). A nano-
material termed carbon nanotubes (CNTs) potentially causes 
an asbestos-like mesothelioma hazard (114, 115). Gold nanopar-
ticles of a particular size, which are widely used in several bio-
medical fields, may be toxic. Gold nanoparticles with a size 1.4 
nm predominantly cause rapid cell death by necrosis, whereas 
gold particles of 15 nm are nontoxic up to 60-fold and 100-fold 
higher concentrations (116). Moreover, the biocompatibility of 
nanoparticles is associated with other characteristics, includ-
ing the nanoparticle shape and structure, particle size, and sur-
face properties (117). Therefore, biocompatibility of nanoparti-
cles needs to be studied further before they are applied in vivo.

This study had several limitations. For instance, it was un-
clear whether the partial effect of antimicrobial nanoparti-
cles on the infected heart valve could be influenced by high-
speed blood flow and whether targeted nanocarriers could 
overcome shear stress of blood flow and adhere to the bio-
film steadily or not, releasing antibiotics continuously. 

CONCLUSION 

As described above, IE is an infectious disease related to bio-
film formation. One of difficult challenges of antimicrobial 
therapy of IE is antibiotic resistance and biofilm formation, 
and the key point of antimicrobial therapy for IE is to effec-
tively and completely eradicate biofilms on heart valves and 
prevent the progress of severe infection. With the develop-
ment of nanotechnology, application of nanoparticles has 
been an alternative strategy for treatment of IE. In this re-
view, applications of several antimicrobial nanoparticles have 
been explored. Nanoparticles or nanocarriers exhibit various 
advantages of having excellent antimicrobial activity, com-
bating drug-resistant microbes in the biofilm, decreasing fre-
quency of drug administration, and minimizing side effects (6). 
Though there are various in vitro studies that show antimicro-
bial nanoparticles exhibit antimicrobial behavior against bio-
film and drug-resistant microbes in the treatment of biofilm 
related diseases such as device-related biofilm infections and 
periodontitis (61, 118, 119), and a novel nanocarrier loading an-
tibiotics is reported to improve the survival of rabbits suffering 
from IE (69). Further in vivo studies are needed to explore the 
therapeutic effects of antimicrobial nanoparticles on IE. 

Overall, there is still a long road ahead for researchers to explore 
new and effective nanoparticles to be used in IE. The progress of 
nanoparticles against biofilm and drug-resistant microbes has 
greatly improved the therapy of biofilm-related infectious dis-
ease. With the development of nanotechnology, the prospect of 
nanoparticles in the treatment of IE is still promising and exciting.
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