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Catalpol pretreatment attenuates cardiac dysfunction following 
myocardial infarction in rats

Introduction

Cardiac dysfunction following myocardial infarction (MI) 
leads to an increased risk of adverse cardiac events and se-
verely affects patients’ quality of life. Despite the improvements 
in clinical management, MI and the resulting complications in 
cardiac function remain the leading cause of morbidity and mor-
tality worldwide (1). Many recent studies have shown that the 
apelin/APJ pathway and cardiomyocyte apoptosis play an im-
portant role in heart failure (2, 3). Therefore, therapeutic strate-
gies that modulate the apelin/APJ signaling pathway and inhibit 
apoptosis may be helpful in improving cardiac function after MI.

Preclinical studies generally use isoproterenol (ISO) to in-
duce MI in rats (4). Subcutaneous administration of ISO causes 

acute myocardial injury accompanied by increased cardiac cell 
apoptosis and altered cardiac function, similar to that seen in 
patients with MI (5). Therefore, this ISO-induced MI model has 
been extensively used to investigate the effects of various po-
tentially cardioprotective drugs (6).

In 1998, peptide apelin was originally isolated from bovine 
stomach tissue extracts. Many studies have suggested apelin to 
be an endogenous ligand of the human orphan G protein-coupled 
receptor APJ (7). Recent research has demonstrated that apelin 
can regulate food intake, angiogenesis, energy metabolism, and 
biological rhythm (8). In addition, another study has shown that 
the apelin/APJ pathway is involved in the maintenance of car-
diac function (9). Apelin treatment has been reported to protect 
the heart against ischemia-reperfusion injury (10). Research-
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ers have also reported that plasma apelin levels decrease in 
patients with cardiac dysfunction (11). However, patients with 
severe heart failure who were implanted with a left ventricular 
assist device showed markedly increased apelin levels in the 
left ventricle (12). Therefore, targeting the apelin/APJ signaling 
pathway has emerged as a novel therapeutic approach against 
heart failure (13).

Rehmannia glutinosa L., a traditional Chinese medicine, has 
been widely used in clinical therapy in China. Catalpol, an iridoid 
glycoside isolated from the root of R. glutinosa, has many thera-
peutic effects such as anti-inflammatory effects (14), protection 
against lung damage (15), and regulation of blood sugar level (16). 
Moreover, its neuroprotective effects have been well demon-
strated in many studies (17). Our previous study has shown that 
catalpol can prevent myocardial injury in rats by substantiating 
the histopathological and biochemical changes. It is reported 
that Catalpol inhibited apoptosis and oxidative stress in glucose-
deprived H9c2 cell through promoting cell mitophagy and modu-
lating estrogen receptor (18). A recent study has also found that 
catalpol inhibits apoptosis through the mitochondrial-dependent 
caspase pathway (19). Thus, further research on the efficacy 
of catalpol in the treatment of cardiovascular diseases seems 
reasonable. The aim of this study was to investigate whether ca-
talpol attenuates ISO-induced cardiac dysfunction in rats, and 
more importantly to explore the underlying mechanisms.

Methods

Animal preparation
Adult male Wistar rats weighing 180–200 g were obtained 

from the Experimental Animal Center of China Medical Univer-
sity. The rats were individually housed in cages at 22°C±3°C and 
40%±10% humidity, with a standard 12 h light/dark cycle. The 
animals were allowed free access to pellet food and tap water. 
All the rats received humane care in accordance with the Guide 
for the Care and Use of Laboratory Animals published by the US 
National Institutes of Health (revised 2011). All the experiments 
were approved by the Ethics Committee of China Medical Uni-
versity (JYT-20060948).

Drug
Catalpol (purity>98%, molecular formula: C15H22O10, molec-

ular weight: 362.33) was supplied by the National Institute for the 
Control of Pharmaceutical and Biological Products (Beijing, Chi-
na). Catalpol was dissolved in physiological saline for treatment. 

Chemicals
Terminal dUTP nick end-labeling (TUNEL; cat. no. C1098) 
and Caspase-3/9 assay Kits (cat. no. c1116 and c1158) were 

purchased from Beyotime Institute of Biotechnology (Shanghai, 
China). Apelin enzyme immunoassay (EIA) kit was produced by 
Phoenix Pharmaceuticals Company (Belmont, CA, USA). ISO was 
supplied by Sigma Biotechnology (Sigma, St. Louis, MO, USA). 

All primary antibodies including antiapelin antibody (cat. no. 
ab125213), anti-APJ antibody (cat. no. ab214369), anti-Bcl-2 anti-
body (cat. no. ab59348), and anti-Bax antibody (cat. no. ab53154) 
were purchased from Abcam Biotechnology (Cambridge, United 
Kingdom), whereas all secondary antibodies were provided by 
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).

Establishment of the MI model
Rats were subcutaneously injected with ISO (85 mg/kg) at 

an interval of 24 h for 2 consecutive days to induce experimental 
MI (20).

Experimental protocols
Thirty-two adult male Wistar rats were randomly assigned 

into the following four groups: control group (n=8), in which the 
rats were intraperitoneally injected with physiological saline for 
10 days; ISO group (n=8), in which the rats were intraperitone-
ally injected with physiological saline for 10 days with ISO being 
subcutaneously administered on the ninth day (85 mg/kg, once at 
an interval of 24 h for 2 consecutive days); catalpol (L, low dose) 
group (n=8), in which the rats were pretreated with catalpol (5 
mg/kg; intraperitoneal injection) for 10 days with ISO being sub-
cutaneously administered on the ninth day (85 mg/kg) for 2 con-
secutive days; and catalpol (H, high dose) group (n=8), in which 
the rats were pretreated with catalpol (10 mg/kg; intraperitoneal 
injection) for 10 days with ISO being subcutaneously adminis-
tered on the ninth day (85 mg/kg) for 2 consecutive days.

Assessment of hemodynamics and left ventricular function
Blood pressure and heart rate were recorded 48 h after the 

first ISO injection using a computerized, noninvasive tail-cuff 
system, Visitech BP-2000 Blood Pressure Analysis System™ 
(Visitech Systems, Apex, NC, USA). Thereafter, all the rats were 
anesthetized with urethane (1 g/kg; intraperitoneal injection) 
to measure the left ventricular function. A catheter filled with 
heparin saline (500 U/mL) was inserted into the left ventricle. Left 
ventricular end-systolic pressure (LVSP), left ventricular end-
diastolic pressure (LVEDP), and left ventricular maximum rate 
of positive or negative pressure development (±LVdp/dtmax) were 
recorded using a BL-420E monitor system (Chengdu, China).

Specimen collection
After measuring cardiac function, blood samples were col-

lected from the left ventricle, and the plasma was separated from 
each sample. The rats were then killed, and their hearts were im-
mediately removed. Left ventricular tissues were washed with 
prechilled physical saline. One part of the tissue was fixed in 
10% formalin, embedded in paraffin, and sectioned at 5 µm, and 
the other part was rapidly stored at −80°C for further analysis.

Enzyme immunoassay for apelin determination
The frozen myocardial tissues were homogenized in 0.1 

mmol/L acetate on ice. Thereafter, the homogenate was boiled 
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for 10 min and centrifuged at 12,000×g for 20 min. The supernatant 
was used to quantify the total protein level using the Bradford as-
say (21). Equal amounts of total protein were used in the apelin-36 
EIA assay kit following the manufacturer’s instructions. Plasma 
was directly used for the assay, which was performed according 
to an EIA protocol recommended by the manufacturer. ED50 for 
rat apelin was 8.62 pg/tube; the cross-reactivity with rat apelin-36 
was 100% and that with apelin-16 and apelin-13 was 0%.

Terminal dUTP nick end-labeling assay
To examine cardiomyocyte apoptosis, a TUNEL assay was per-

formed using an apoptosis detection kit (C1098, Beyotime Institute 
of Biotechnology, Shanghai, China) following the manufacturer’s 
instructions. Apoptotic cells (dark brown) were then counted 
under a microscope (Olympus, Tokyo, Japan) at 400× magnifica-
tion. Five sections from each group were randomly selected, and 
10 random fields from each section were examined. In each field, 
the total numbers of cells and TUNEL-positive cells were counted. 
Finally, the percentage of apoptotic cells was calculated.

Western blot analysis
Western blotting was used to measure the apelin, APJ, Bcl-

2, and Bax expression levels in the left ventricular tissues. The 
frozen tissues were weighed and homogenized in RIPA lysis buf-
fer. Protein levels in the supernatant were determined using the 
Bradford method (21). Thereafter, 40 µg of protein was subjected 
to SDS-PAGE with 10% separation and transferred onto a nitro-
cellulose membrane for 3 h at 200 mA. The membranes were 
blocked with 1% bovine serum albumin for 1 h. Subsequently, 
primary antibodies for apelin (ab125213, dilution, 1:500; Abcam,

Cambridge, United Kingdom), APJ (ab214369, dilution, 1:500; 
Abcam, Cambridge, United Kingdom), Bcl-2 (ab59348, dilution, 
1:500; Abcam, Cambridge, United Kingdom), and Bax (ab53154, 
dilution, 1:500; Abcam, Cambridge, United Kingdom) were added, 
followed by overnight incubation at 4°C. After washing twice 
with TBS, membranes were incubated with the respective sec-
ondary antibodies (dilution, 1:10,000; Santa Cruz, CA, USA). Final-
ly, protein band intensities were quantified using a densitometer 
analysis system (Quantity One software, Bio-Rad, PA, USA).

Measurement of caspase-3 activity
Myocardial caspase-3 activity was determined using a cas-

pase-3 activity assay kit according to the manufacturer’s in-

structions (c1116; Beyotime Biotech, Shanghai, China). Frozen 
myocardial tissues were crushed in liquid nitrogen and homog-
enized in an ice-cold lysis buffer. The homogenates were then 
centrifuged for 15 min at 4°C in a microcentrifuge (16,000×g). Af-
ter collecting the supernatant, the protein level in each sample 
was assayed. Subsequently, 40 µL of reaction buffer with 10 µL of 
Ac-DEVD-pNA was added to 50 µL of protein samples, followed 
by incubation at 37°C for 6 h. Finally, the release of p-nitroaniline 
was measured at 405 nm using a microplate reader (Molecu-
lar Devices, Sunnyvale, CA, USA). Caspase-3 activity was ex-
pressed as unit/h/mg protein.

Measurement of caspase-9 activity
Myocardial caspase-9 activity was determined using a cas-

pase-9 activity assay kit (c1158; Beyotime Biotech, Shanghai, 
China). The protocol was similar to that of the caspase-3 activity 
assay, except for the use of Ac-LEHD-pNA as a substrate. Cas-
pase-9 activity was expressed as unit/h/mg protein.

Statistical analysis
All data were presented as mean±standard deviation 

(SD). SPSS 13.0 software was used for data analysis. The Kol-
mogorov–Smirnov test was applied to test the normality of distri-
butions. One-way analysis of variance (ANOVA) test followed by 
the Bonferroni post hoc test was used for multiple comparisons. 
P<0.05 was considered statistically significant.

Results

Mortality
As for a preliminary experiment was successfully performed 

in advance, only one rat in the ISO group was lost due to improp-
er cannulation of blood vessel while monitoring cardiac function. 
The overall mortality was 3.12%.

General observations
As shown in Table 1, no significant differences in the body 

weight, heart weight, and heart index were observed among the 
groups, although a slight increase in the body weight and heart 
weight was observed in the ISO group.

Table 1. Effects of catalpol on body weight, heart weight, and heart index in ISO-induced myocardial infarction in rats

Groups Number Body weight (g) Heart weight (mg) Heart index (mg/g)

Control 8 227.37±11.87 656.50±24.47 2.85±0.12

ISO 7 235.14±15.61 661.57±28.84 2.88±0.15

Catalpol (L) 8 228.63±11.03 658.88±25.27 2.91±0.16

Catalpol (H) 8 225.50±14.87 660.87±25.13 2.89±0.11

Catalpol (L) - low-dose catalpol; Catalpol (H) - high-dose catalpol; Heart index - body weight/heart weight. #P<0.05 versus control group; *P<0.05 versus ISO group
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Effects of catalpol on the hemodynamic parameters in 
different groups
Table 2 shows the changes in the hemodynamic parameters 

during the experiment. The ISO group showed lower SBP, DBP, 
and MBP than the control group (p=0.004, p=0.02, and p=0.002, re-
spectively). However, catalpol pretreatment (10 mg/kg) prevented 
this decline (p=0.045, p=0.007, and p=0.22, respectively). A similar 
change was not observed in the catalpol (L) group. Further, no sig-
nificant change in the heart rate was observed in any two groups.

Effects of catalpol on cardiac function following MI in rats
The ISO group showed a significant decrease in±LVdp/dtmax 

and LVSP but an increase in the LVEDP value compared with the 

control group (Table 3) (p<0.001, p<0.001, p<0.001, and p<0.001, 
respectively). Catalpol pretreatment (5 mg/kg) for 10 days sig-
nificantly prevented the changes in the +LVdp/dtmax and LVEDP 
(p=0.043 and p<0.001) in the catalpol (L) group. Furthermore, al-
terations in the ±LVdp/dtmax, LVSP, and LVEDP were more statisti-
cally significant (p=0.002, p<0.001, p=0.007, and p<0.001, respec-
tively) in the catalpol (H) group than in the ISO group.

Figure 1. Effects of catalpol on apelin levels in the plasma and myocar-
dium of the ISO-treated rats. (a) plasma apelin; (b) myocardium ape-
lin. #P<0.05 versus the control group. ##P<0.01 versus the control group; 
*P<0.05 versus the ISO group; **P<0.01 versus the ISO group
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Figure 2. Effects of catalpol on the apelin and APJ protein expression 
levels in the myocardium of the ISO-treated rats. #P<0.05 versus the 
control group. ##P<0.01 versus the Control group; *P<0.05 versus the ISO 
group; **P<0.01 versus the ISO group
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Table 2. Effects of catalpol on the hemodynamic parameters of rats following myocardial infarction

Groups Number SBP (mm Hg) DBP (mm Hg) MBP (mm Hg) HR (beats/min)

Control 8 137.87±17.33 116.75±14.68 126.13±12.06 383.87±18.58

ISO 7 111.86±9.63## 94.86±11.39# 102.43±11.87## 403.47±22.86

Catalpol (L) 8 125.00±10.23 99.63±7.79 111.50±9.02 395.12±20.01

Catalpol (H) 8 131.37±13.08* 119.50±16.64** 120.63±11.04* 401.01±19.97

Catalpol (L) - low-dose catalpol; Catalpol (H) - high-dose catalpol; SBP - systolic blood pressure; DBP - diastolic blood pressure; MBP - mean blood pressure; HR - heart rate. #P<0.05, 
##P<0.01 versus control group; *P<0.05, **P<0.01 versus ISO group

Table 3. Effects of catalpol on left ventricular function in ISO-induced myocardial infarction in rats

Groups Number +LVdp/dtmax (mm Hg) –LVdp/dtmax (mm Hg) LVEDP (mm Hg) LVSP
     (mm Hg)

Control 8 3733.01±273.04 3367.01±240.02 4.85±0.86 151.63±12.72

ISO 7 2730.14±278.57## 2524.14±295.76## 17.34±1.09## 122.71±11.43##

Catalpol (L) 8 3160.37±282.43* 2674.50±213.73 13.58±0.70** 126.63±9.47

Catalpol (H) 8 3346.38±306.01** 3120.13±174.08** 11.34±1.15** 143.38±10.39**

Catalpol (L) - low-dose catalpol; Catalpol (H) - high-dose catalpol; +LVdp/dtmax - left ventricular maximum rate of positive pressure development; −LVdp/dtmax - left ventricular maximum 
rate of negative pressure development; LVEDP - left ventricular end-diastolic pressure; LVSP - left ventricular systolic pressure. #P<0.05, ##P<0.01 versus control group; *P<0.05, **P<0.01 
versus ISO group
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Effects of catalpol on plasma and myocardium apelin levels 
in ISO-treated rats
Our results demonstrated that the ISO group had signifi-

cantly lower plasma apelin levels than the control group (Fig. 
1) (P<0.001). Moreover, the catalpol (L and H) groups showed 
significantly higher plasma apelin levels than the ISO group 
(P=0.003 and P=0.002, respectively). Similarly, catalpol (10 mg/
kg) significantly increased myocardium apelin levels (P<0.001).

Effects of catalpol on apelin and APJ expression levels
Apelin and APJ expression levels were significantly lower in 

the ISO group than in the control group (p<0.001 and p<0.001, re-
spectively). Moreover, compared with the ISO group, catalpol (10 
mg/kg) significantly increased apelin and APJ expression levels 
in the control group (Fig. 2) (p<0.001 and p<0.001, respectively). 

TUNEL assay
A TUNEL assay was performed to evaluate cardiomyocyte 

apoptosis in rats. As shown in Figure 3, the rate of cell apoptosis 
in the left ventricular tissues was higher in the ISO group than 
that in the control group (p<0.001). However, catalpol pretreat-
ment (5 and 10 mg/kg) reduced the percentage of apoptotic cells 
(p=0.037 and p=0.002, respectively).

Effects of catalpol on Bax and Bcl-2 expression levels
Western blot assays showed that compared with the control 

group, the Bax expression levels in the left ventricular tissues sig-
nificantly increased and the Bcl-2 expression levels decreased 
in the ISO group (p<0.001 and p<0.001, respectively). However, 
catalpol pretreatment (10 mg/kg) reversed these changes (Fig. 4) 
(p=0.003 and p=0.005, respectively). 

Effects of catalpol on myocardium caspase-3 and caspase-9 
activities in ISO-treated rats
As shown in Figure 5, although caspase-3 activity was in-

creased in the ISO group, this upregulation was prevented by 
catalpol pretreatment (5 and 10 mg/kg) (p=0.003 and p=0.005, re-
spectively). Similarly, the ISO group showed significantly higher 
caspase-9 activity than the control group (p=0.007). However, 
compared with the ISO group, catalpol pretreatment (5 and 10 
mg/kg) for 10 days decreased the caspase-9 activity in the catal-
pol (L and H) groups (p=0.032 and p=0.006, respectively).

Discussion

The present study revealed that catalpol pretreatment for 10 
days markedly attenuates cardiac dysfunction following MI in 

Figure 3. Photomicrographs of myocardial tissue sections showing TU-
NEL staining (400×). #P<0.05 versus the control group. ##P<0.01 versus 
the control group; *P<0.05 versus the ISO group; **P<0.01 versus the 
ISO group
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rats. These cardioprotective properties may be partly because of 
the modulation of the apelin/APJ signaling pathway and inhibition 
of cardiomyocyte apoptosis. 

In the present study, hemodynamic parameters were moni-
tored and recorded. ISO injections caused hemodynamic altera-
tions, as indicated by a marked decrease in the systolic, diastolic, 
and mean blood pressures. Nevertheless, 10 mg/kg of catalpol 
significantly inhibited these changes. Moreover, ISO-treated rats 
showed lower LVESP, +LVdp/dtmax, and −LVdp/dtmax and higher 
LVEDP; these results are in agreement with those reported previ-
ously (22). Catalpol pretreatment, particularly in the catalpol (H) 
group, prevented left ventricular contractile dysfunction, as shown 
by improvements in LVSP and ±LVdp/dtmax. It also inhibited the ISO-
induced increase in LVEDP, which was indicated by an ameliora-
tion of left ventricular diastolic dysfunction. These results suggest 
that catalpol can improve cardiac function in ISO-treated rats. 

Apelin, isolated from bovine stomach tissue extracts, has been 
identified as an endogenous ligand of the human orphan G protein-
coupled receptor APJ (23). Widely distributed in various tissues 
and highly expressed in the heart (24), apelin exhibits significant 
hypotensive and positive inotropic properties (25). It has been re-
ported that apelin-deficient mice develop progressive heart failure 
(26). Exogenous administration of apelin exerts in vivo inotropic 
effects on normal and failing hearts. Genetic studies have also 
demonstrated that a disturbance in the endogenous apelin/APJ 
axis is closely associated with human cardiac dysfunction. These 
findings suggest that the apelin/APJ pathway plays a substantial 
role in the regulation of cardiovascular homeostasis. In the pres-
ent study, we found a significant decrease in apelin levels in the 
plasma and myocardium following ISO administration. However, 
catalpol could enhance apelin levels in the plasma and myocar-
dium, particularly in the catalpol (H) group. Similar changes in 
the apelin and APJ expression levels in the heart were observed. 
Therefore, these results suggest that catalpol can improve car-
diac function, at least in part, through the activation of the apelin/
APJ signing pathway.

Increasing evidence has demonstrated the substantial role of 
cardiomyocyte apoptosis in the progression of cardiac dysfunc-
tion in both acute and long-term settings after MI (27, 28). Given 
that apoptosis reduces the number of normal contractile cardio-
myocytes and causes adverse ventricular remodeling, it severely 
affects cardiac function (29). Several drugs effective in treating 
heart failure (HF) have been proven to prevent cardiomyocyte 
apoptosis, including beta-blockers (30) and angiotensin II recep-
tor antagonists (31). Therefore, therapeutic strategies preventing 
apoptosis offer an attractive approach for the treatment of HF. TU-
NEL-positive cells and caspase-3 and caspase-9 activities have 
been generally used to determine cardiomyocyte apoptosis. Our 
results showed that the ISO group had more number of apoptotic 
cardiomyocyte cells and higher caspase-3 and caspase-9 activi-
ties than the control group. On the other hand, catalpol pretreat-
ment significantly inhibited cardiomyocyte apoptosis and de-
creased caspase-3 and caspase-9 activities. The aforementioned 

results reveal that catalpol may protect myocardial cells against 
apoptosis in vivo.

Bax and Bcl-2 are two important members of the Bcl-2 family 
and are directly associated with apoptosis regulation. Bax accel-
erates cell apoptosis (32, 33), whereas Bcl-2 inhibits cell apoptosis 
(34). The Bcl-2/Bax ratio determines the fate of cells after apoptot-
ic stimulation (35). In the present study, compared with the control 
group, the ISO group exhibited significant downregulation in the 
Bcl-2 expression and marked upregulation in the Bax expression. 
However, catalpol pretreatment prevented the downregulation of 
Bcl-2 and the upregulation of Bax, indicating that catalpol may re-
verse the imbalance in the cardiomyocyte Bcl-2/Bax ratio. Thus, 
these results show that catalpol pretreatment may inhibit cardio-
cyte apoptosis through the regulation of apoptosis-related protein 
expression. 

Study limitations
There are some limitations to the present study. First, echocar-

diographic examination was not performed to further evaluate the 
heart function. Second, heart dysfunction is a complicated pro-
cess, and the relevant response participating in the process, such 
as energy metabolism, was not analyzed.

Conclusion

Based on the findings of the present study, we conclude that ca-
talpol has cardioprotective effects on ISO-induced MI in rats. These 
protective effects may be associated with the amelioration of cardiac 
dysfunction, at least in part, through the regulation of the apelin/APJ 
signaling pathway and inhibition of cardiomyocyte apoptosis.
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