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Circular RNA expression profiles of persistent atrial fibrillation in 
patients with rheumatic heart disease

Introduction

Growing evidence demonstrates an increased incidence and 
prevalence of atrial fibrillation (AF) (1). According to its pathog-
eny, AF can be divided into two categories: pulmonary vein (PV)-
related AF and non-PV-related AF. Despite advances in medica-
tions and ablation technologies, the efficacy of current strategies 
for non-PV-related AF is suboptimal, reflecting that an improved 
understanding of arrhythmia mechanisms is urgently needed (2, 
3). Currently, atrial dilatation, cellular hypertrophy, atrial fibrosis, 
inflammation, oxidative stress, apoptosis, calcium overload, loss 
of cell–cell contacts, altered autonomic tone, deposition of amy-
loid, protein catabolism, ion channel deficiency, posttranscrip-
tional changes, and epigenetic factors are all thought to be in-

volved in the electrophysiological and structural remodeling of 
AF (4-12). However, critical and initial mechanisms of AF are still 
poorly understood.

Non-coding RNAs (ncRNAs) comprise a class of RNA mole-
cules that do not encode proteins but regulate protein expression 
(13), such as microRNAs (miRNAs), Piwi-interacting RNAs, long 
ncRNAs, circular RNAs (circRNAs), and endogenous siRNAs, and 
so on. It has been speculated that these ncRNAs are emerging key 
regulators of gene expression under physiological and pathologi-
cal conditions (14, 15). Moreover, emerging data have shown that 
circRNAs, a novel type of endogenous non-coding RNAs, are in-
volved in the pathophysiology of cardiovascular diseases (16, 17). 
However, their expression profile and circRNA–miRNA network 
in cardiac arrhythmia remains unclear. In the present study, we 
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analyzed and predicted circRNA expression profiles in AF using 
whole transcriptome resequencing techniques.

Methods

Adult heart sample collection
The study was conducted in accordance with the Decla-

ration of Helsinki guidelines. The Institutional Ethics Review 
Board of our hospital approved the study. Tissue samples were 
collected from the removed left atrial appendages of nine adult 
patients with rheumatic heart disease and persistent AF under-
going mitral valve replacement. Control samples of the left atrial 
appendages were obtained from organ donors with six normal 
hearts collected at the time of organ procurement with consent 
provided for research tissue collection. The consent to donate 
to research was obtained through the Transfer of Tissue Agree-
ment of our institution. Patients with cardiac or pulmonary dis-
eases were excluded from the study (Table 1). Each sample was 
preserved in an RNA stabilization reagent (RNA Safety Interna-
tional) and was subsequently stored at −80°C until use.

RNA extraction and qualification
Total RNA was extracted from the atrial samples using the mir-

Vana miRNA Isolation Kit (Ambion, Austin, TX, USA) according to 
the manufacturer’s protocol. RNA integrity was evaluated using 
the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA). The samples with an RNA integrity number ≥7 were sub-
jected to the subsequent analysis. Total RNA was quantified by the 
NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA).

Library preparation and RNA-Seq
The cDNA libraries were constructed using TruSeq Stranded 

Total RNA with Ribo-Zero Gold according to the manufacturer’s in-
structions. Then, these libraries were sequenced on the Illumina 
HiSeq X Ten platform, and 150 bp paired-end reads were generated.

Detection, annotation, and quantification of circRNAs
RNA sequencing (RNA-Seq) data were analyzed using Cir-

cRNAs Identifier (CIRI), an algorithm for de novo circRNA iden-
tification (18). All alignment records in SAM file were generated 

by BWA-MEM40 and then analyzed by CIRI for searching the po-
tential back-spliced junction reads that are made up of two seg-
ments that align to the reference genome in chiastic order. Junc-
tion reads and circRNA candidates in SAM files were scanned 
twice by CIRI. Finally, the identified circRNAs are output with 
annotation information.

Quantitative real-time PCR validation
The first strand of cDNA was synthesized by Moloney mu-

rine leukemia virus reverse transcriptase (Promega, South-
ampton, UK). Quantitative reverse transcription polymerase 
chain reaction (qRT-PCR) was performed using an iCycler iQ 
system (Bio-Rad, CA, USA) as described previously (19). The 
primer sequences were designed in the laboratory and syn-
thesized by Generay Biotech (Generay, Shanghai, China) based 
on the mRNA sequences obtained from the National Center 
for Biotechnology Information database (Table 2). BLAST was 

Table 1. Baseline characteristics of the subjects

Variable  AF group Non-AF group

  (n=9) (n=6)

Age  50.1±7.2 47.3±12.1
Gender (%)
 Female  6 (66.7%) 3 (50%)
 Male  3 (33.3%) 3 (50%)
Left atrial diameter (mm) 70.1±25.1† 35.2±2.6
Ejection fraction 51.7±3.2 55.1±4.9
Rheumatic heart disease Yes None
Hypertension  None None
Hyperlipidemia  None None
Diabetes mellitus None None
Coronary heart disease None None
Infectious disease None None
Connective tissue disease None None
Other autoimmune diseases None None
Other cardiovascular diseases None None

Data are presented as mean±standard deviation and n (%).
†P<0.01 (AF group vs. non-AF group).
AF - atrial fibrillation

Table 2. Primers designed for qRT-PCR validation of selected lncRNAs, circRNAs, and mRNAs

Gene symbol  Forward primer Reverse primer Product length (bp)

circRNA_20118 CTTCAAGGCAAGATGCTCC GCTATGAAAGTCCTCGTTGG 94
circRNA_17558 CCAGGAGTGTTCAAGATGC GGTACGGTACTTGATGTCG 133
circRNA_16688 GTCACAACGCATGCAACA CTGAAAGGGTTGGGTTCATAG 109
circRNA_11058 ACCACCAGCTAAAGTGTCA ACTTTGGAGGTTCTTTGGC 95
circRNA_11017 AAGGAAGTGGTCCCAGAAA CACAATTCTTGAAGGTTCTAGC 114
circRNA_11109 CCAAGAAGCTCATCCCAGA CAGGCTTGATGTCAAAGAAGG 108
ACTB  CCATCATGAAGTGTGACG GCCGATCCACACGGAGTA 185
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used to verify the specificity of the PCR primers. Melting curve 
analysis was performed to validate the specific generation of the 
expected PCR product. The expression levels of circRNAs were 
normalized to ACTB and were calculated using the 2−ΔΔCt method.

GO and KEGG pathway enrichment analyses
Each circRNA was first annotated to linear host mRNA ac-

cording to their position relationship on the chromosome. Then, 
using the linear host mRNA as the proxy of its related circRNAs, 
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were applied 
to investigate the potential functions of differentially expressed 
circRNAs. GO analysis was applied to annotate the genes with 
terms under biological process (BP), cellular component (CC), 
and molecular function (MF) (http://www.geneontology.org). 
KEGG pathway analysis was performed to explore the significant 
pathways of the differentially expressed genes (http://www.ge-
nome.jp/kegg/).

circRNA–miRNA co-expression network
We constructed a circRNA–miRNA network to reveal the in-

teractions between circRNAs and miRNAs in AF pathogenesis. 
miRNA-targeted circRNAs were predicted through the miRanda 
software. Then, the interaction network was built and visually 
displayed using the Cytoscape software based on the screen-
ing of circRNA–miRNA gene pairs. A diamond node represents 
circRNA, and a circle node represents miRNA. Red and green 
colors represent up- and down-regulation, respectively. The sig-
nificant nodes in a core position of the regulated network are 
potentially more associated with AF.

Statistical analysis
Data are presented as mean±standard error of the mean or n 

(%), unless otherwise indicated. Student’s t-test was used for ana-
lyzing two-group differences. DESeq package (version 1.18.0) of R 
language was used to determine the differential expression of cir-
cRNAs (20). |log2 Fold Change| >1.0 and p<0.05 were considered to 
indicate a statistically significant difference on sequence analysis.

Results

Expression profile of circRNAs
The genes with |log2 Fold Change| >1.0 and p<0.05 were con-

sidered to be up-regulated, and those with |log2 Fold Change| 
<−1.0 and p<0.05 were considered to be down-regulated. A total 
of 108 circRNAs were detected to be differentially expressed. 
Among them, 51 circRNAs were up-regulated, and 57 circRNAs 
were down-regulated in AF tissues compared with controls, re-
spectively, of which the top 40 differently expressed circRNAs 
were listed in Table 3. Differentially expressed circRNAs with 
statistical significance between the two groups were identified 
using a volcano plot filtering (Fig. 1).

Validation of differentially expressed circRNAs
Six circRNAs (circRNA_20118, circRNA_17558, circRNA_16688, 

circRNA_11109, circRNA_11017, and circRNA_11058) were ran-
domly selected for qRT-PCR validation and Sanger sequencing 
to validate the reliability of the sequencing results. As expected, 
the expression of the first three circRNAs was up-regulated, and 
the last three circRNAs were down-regulated in the AF samples 
versus control samples (Fig. 2), consistent with the sequencing 
results. Furthermore, the sequence of the circRNAs was identi-
fied by Sanger sequencing results (data not shown).

Figure 1. Volcano plot of circRNAs between AF and controls. Green plots 
represent down-regulated circRNAs. Red plots represent up-regulated 
circRNAs with absolute |log2 Fold Change| >1.0 and corrected P-value 
<0.05. Gray plots represent circRNAs with no significant difference. 
Blue plots represent circRNAs with |log2 Fold Change| >1.0 but with no 
significant difference
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the log2-transformed fold changes computed from the sequencing and 
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Table 3. Top 40 differently expressed circRNAs in the AF group

circRNA ID  |log2 fold  P-value Regulation Transcript_position Gene

  change|

circRNA_00949|chr1:94458607_94491247_+ 4.089 0.002 Up chr1:94418086_94518663_+ ABCD3

circRNA_13172|chr3:69287752_69313517_- 3.405 0.008 Up chr3:69168782_69386304_- FRMD4B

circRNA_15620|chr5:79396823_79447145_- 3.259 0.042 Up chr5:79373824_79513836_- HOMER1

circRNA_14245|chr4:38089932_38118192_+ 3.101 0.020 Up chr4:37891084_38139173_+ TBC1D1

circRNA_04241|chr12:19253940_19287556_+ 3.090 0.006 Up chr12:19129692_19376400_+ PLEKHA5

circRNA_01452|chr1:180003174_180024582_+ 2.876 0.039 Up chr1:179954773_180114875_+ CEP350

circRNA_20118|chr9:111786793_111787947_+ 2.818 <0.001 Up chr9:111686175_111794992_- C9orf84

circRNA_08942|chr18:35846281_35852268_- 2.701 0.037 Up

circRNA_02905|chr10:95336521_95367699_- 2.683 0.038 Up chr10:95311773_95389791_- SORBS1

circRNA_03391|chr11:22221097_22276199_+ 2.621 0.019 Up chr11:22192513_22283357_+ ANO5

circRNA_02637|chr10:68142940_68161752_+ 2.618 0.046 Up chr10:68106117_68212017_+ MYPN

circRNA_11035|chr2:178670218_178688224_- 2.500 0.048 Up chr2:178525989_178807423_- TTN

circRNA_16688|chr6:54202105_54230917_+ 2.267 0.004 Up chr6:54010979_54262761_+ MLIP

circRNA_17648|chr7:18585281_18648683_+ 1.907 0.038 Up chr7:18086942_18999521_+ HDAC9

circRNA_15410|chr5:50399107_50411383_- 1.803 0.036 Up chr5:50396197_50441400_- EMB

circRNA_06639|chr15:42827928_42878684_- 1.714 0.044 Up chr15:42744338_42920809_- TTBK2

circRNA_11090|chr2:178678125_178678830_- 1.711 0.025 Up chr2:178525989_178807423_- TTN

circRNA_03059|chr10:113876521_113884380_+ 1.607 0.044 Up chr10:113854632_113907974_+ NHLRC2

circRNA_17558|chr7:5641154_5652510_- 1.499 <0.001 Up chr7:5620041_5781730_- RNF216

circRNA_01695|chr1:219179147_219211752_+ 1.329 0.014 Up chr1:219173878_219212863_+ LYPLAL1

circRNA_11174|chr2:178694599_178721202_- -2.003 0.001 Down chr2:178525989_178807423_- TTN

circRNA_10998|chr2:178654445_178715774_- -2.185 0.001 Down chr2:178525989_178807423_- TTN

circRNA_06953|chr15:63924816_63926093_- -2.192 0.003 Down chr15:63907036_64046322_- DAPK2

circRNA_11058|chr2:178672635_178721202_- -2.365 0.021 Down chr2:178525989_178807423_- TTN

circRNA_11040|chr2:178670218_178715774_- -2.400 0.001 Down chr2:178525989_178807423_- TTN

circRNA_19591|chr9:13939661_14021355_- -2.520 0.013 Down

circRNA_14783|chr4:113174416_113199109_+ -2.559 0.013 Down chr4:112818083_113383740_+ ANK2

circRNA_16183|chr5:146254943_146258593_+ -2.587 0.037 Down chr5:146203550_146289223_+ RBM27

circRNA_11109|chr2:178678125_178722134_- -2.598 0.006 Down chr2:178525989_178807423_- TTN

circRNA_03961|chr11:115209574_115240420_- -2.684 0.001 Down chr11:115173625_115504523_- CADM1

circRNA_11081|chr2:178674314_178715774_- -2.714 0.002 Down chr2:178525989_178807423_- TTN

circRNA_11156|chr2:178689813_178722134_- -2.950 0.049 Down chr2:178525989_178807423_- TTN

circRNA_11103|chr2:178678125_178715774_- -3.010 <0.001 Down chr2:178525989_178807423_- TTN

circRNA_02368|chr10:24495147_24545103_+ -3.013 <0.001 Down chr10:24042336_24547840_+ KIAA1217

circRNA_16170|chr5:145866501_145935763_- -3.173 0.002 Down chr5:145858387_145937176_- GRXCR2

circRNA_17137|chr6:123438063_123464983_- -3.263 0.018 Down chr6:123216339_123637093_- TRDN

circRNA_01283|chr1:155926676_155927156_- -3.408 0.041 Down chr1:155913043_155934442_- KIAA0907

circRNA_16169|chr5:145866501_145931677_- -3.590 0.019 Down chr5:145858387_145937176_- GRXCR2

circRNA_18020|chr7:79652499_79671000_+ -3.942 0.002 Down

circRNA_11017|chr2:178662966_178715774_- -4.367 0.001 Down chr2:178525989_178807423_- TTN
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GO and KEGG pathway analyses
We conducted the GO and KEGG pathway analyses to pre-

dict the potential functions of circRNAs. The predicted function-
al terms with p-value <0.05 were selected and ranked by enrich-
ment score [−log10 (p-value)]. The top 10 generally changed GO 
terms in all comparison groups were classified by BP, CC, and MF 
(Fig. 3). We found that the most significantly enriched BP term 
was muscle contraction (GO: 0006936). The most significantly en-
riched CC term was muscle myosin complex (GO: 0005859). The 
most significantly enriched MF term was muscle alpha-actinin 
binding (GO: 0051371). The pathway analysis indicated that five 
pathways might be involved in AF pathogenesis (Fig. 4). The most 
significantly involved pathways were dilated cardiomyopathy 
(DCM) (path: hsa05414) and hypertrophic cardiomyopathy (HCM) 
(path: hsa05410).

Construction of the circRNA–miRNA network
We subsequently constructed a circRNA–miRNA network 

(Fig. 5) based on the sequencing results. In the network, a 
diamond node represents circRNA, and a circle node repre-
sents miRNA. There was a relatively intensive relationship; 
circRNA19591, circRNA19596, and circRNA16175 interacted 
with 36, 28, and 18 miRNAs, respectively; miR-29b-1-5p and 
miR-29b-2-5p were related to 12 down-regulated circRNAs, re-
spectively (Table 4).

Discussion

AF is a heterogeneous disease, and its incidence is influ-
enced by epidemiological factors and genetic predisposition 
(21). Despite the broad exploration of pathogeny in AF, (22-27) 
its cellular and biological mechanisms remain largely unknown. 
At present, PV isolation with cryoballoon and radiofrequency 
ablation is effective in the therapy of AF initiated by premature 
atrial contractions originated from PV and distribution of the 
muscle fascicle within the PV antrum. However, optimal clinical 
treatment for non-PV-related AF due to elusive pathogenesis is 
still lacking, such as AF in rheumatic heart disease.

circRNAs, a recently discovered new form of RNA, have 
been found to regulate transcription, which expanded our 
knowledge in understanding the complexity of non-coding 
RNA. Emerging evidence uncovered that endogenous cir-
cRNAs might regulate miRNA function as miRNA sponges to 
inhibit miRNA activity and be involved in transcriptional con-
trol (28, 29). circRNAs associated with related miRNAs or “cir-
cRNA–miRNA axes/network” are involved in multiple physio-
logical and pathological processes, including the development 
of cardiovascular diseases (30-34). For example, heart-related 
circRNA acts as an endogenous miR-223 sponge to modulate 
the expression of miR-223 and apoptosis repressor with CARD 

Figure 3. GO enrichment analysis for dysregulated circRNA gene symbols. Most significantly enriched [−log10 (p-value)] GO terms of circRNA gene 
symbols according to biological process (red bar), cellular component (green bar), and molecular function (blue bar)
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domain, through which it regulates cardiomyocyte hypertro-
phy and heart failure (22, 23). In addition, Cdr1as, one of the 
circRNAs, plays proapoptotic roles during the development of 
myocardial infarction via function as miR-7 sponges (35). More-
over, circRNA circ-Foxo3 can promote cardiac senescence 
(34). However, to our knowledge, circRNA–miRNA axes/net-
work in AF has not yet been reported.

In the present study, we investigated that circRNA expres-
sion profiles are significantly different between patients with 
AF and no AF. Fifty-one up-regulated and fifty-seven down-reg-
ulated circRNAs were significantly differentially expressed in 
patients with AF. We also predicted the potential functions of 
significant differential circRNAs using the GO and KEGG path-
way analyses in patients with AF. GO analysis revealed that 
the main BPs are correlated with the structure or function of 
muscle contraction, such as cytoskeleton of cardiomyocytes. 
Interestingly, KEGG pathway analysis also indicates that there 
is molecular crosstalk between AF and cardiomyopathy, espe-
cially DCM and HCM, which may reveal that these three groups 
of patients possibly share a common circRNA-target network. 

Moreover, according to the KEGG enrichment scores, signaling 
pathway regulating pluripotency of stem cells was detected, 
which indicated that circRNAs may contribute to the homeo-
static mechanisms of AF.

Furthermore, we investigated the possible circRNA–miRNA 
axes/network in AF. A network of significantly dysregulated 
circRNAs with their adjacent miRNA was delineated based on 
the binding capacity of circRNAs on miRNAs, which might pro-
vide a new clue for elucidating the underlying mechanism of 
AF. Figure 5 shows that the 36, 28, and 18 nearby miRNAs corre-
sponding to circRNA19591, circRNA19596, and circRNA16175, 
respectively, were identified, and these three circRNAs were 
all down-regulated and might be relatively potential regulators 
of gene expressions by interacting with the corresponding 
endogenous miRNAs in AF. In addition, accumulating studies 
have demonstrated a functional role for miRNAs in the patho-
physiology of AF (36, 37). Among them, miR-29 is considered 
to be a biomarker and/or therapeutic target of AF due to the 
contribution to atrial fibrotic remodeling (38). Intriguingly, for the 
first time, our network displayed that miR-29b-1-5p and miR-29b-

Table 4. Supposed circRNA–miR-29 axes

miRNA ID  Term List Hits P-value circRNA ID Regulation

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_10998 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11017 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11040 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11044 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11058 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11071 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11074 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11081 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11103 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11109 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11156 Down

hsa-miR-29b-1-5p 24 12 <0.001 circRNA_11108 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_10998 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11017 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11040 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11044 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11058 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11071 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11074 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11081 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11103 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11109 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11156 Down

hsa-miR-29b-2-5p 22 12 <0.001 circRNA_11108 Down
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2-5p have interactions with 24 down-regulated circRNAs. There-
fore, it is hypothesized that these 24 circRNAs may be directly or 
indirectly involved in structural remodeling in AF. However, the 
detailed mechanisms still need to be explored, and functional 
studies are required to elucidate their roles in AF. In our study, 
circRNA–miRNA network possibly provides a new perspective 
for competitiveness of AF. Further research on these circRNA–
miRNA axes/network is being conducted in our laboratory.

Study limitations
Our study had a limited number of patients analyzed. More-

over, we just preliminarily investigated the expression profile of 
circRNAs in AF, and functional protein structures, protein–pro-
tein interactions, and detailed molecular pathways in the AF pro-
cess should be further explored.

Conclusion

The incidence of AF is increasing. The curative effect of non-
PV-related AF may not be desirable due to its unclear mecha-

Figure 4. KEGG pathway enrichment analysis of up- and down-regulated circRNAs with the top five enrichment score

KEGG Enrichment
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Figure 5. circRNA–miRNA regulatory network analysis of ncRNAs in 
patients with AF. Red diamonds represent up-regulated circRNAs. 
Green diamonds represent down-regulated circRNAs. Blue dots 
represent miRNA
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nism. We gain a landscape of circRNA expression and con-
structed a circRNA–miRNA network that might be associated 
with the development of AF. These results suggest that specific 
circRNAs could be valuable for AF therapy due to rheumatic 
heart disease. These studies might enrich our understanding 
of the pathogenesis of AF and enable further research on the 
pathogenesis of AF.
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