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Electrogram Interpretation: A New Frontier in 
Cardiac Diagnostics for Pacemaker Patients

ABSTRACT

Background: Interpreting intracardiac electrograms (EGMs) requires expertise that many 
cardiologists lack. Artificial intelligence models like ChatGPT-4o may improve diagnostic 
accuracy. This study evaluates ChatGPT-4o’s performance in EGM interpretation across 
4 scenarios (A-D) with increasing contextual information.

Methods: Twenty EGM cases from The EHRA Book of Pacemaker, ICD, and CRT 
Troubleshooting were analyzed using ChatGPT-4o. Ten predefined features were 
assessed in Scenarios A and B, while Scenarios C and D required 20 correct responses per 
scenario across all cases. Performance was evaluated over 2 months using McNemar’s 
test, Cohen’s Kappa, and Prevalence- and Bias-Adjusted Kappa (PABAK).

Results: Providing clinical context enhanced ChatGPT-4o’s accuracy, improving from 
57% (Scenario A) to 66% (Scenario B). “No Answer” rates decreased from 19.5% to 8%, 
while false responses increased from 8.5% to 11%, suggesting occasional misinterpre-
tation. Agreement in Scenario A showed high reliability for atrial activity (κ = 0.7) and 
synchronization (κ = 0.7), but poor for chamber (κ = −0.26). In Scenario B, understanding 
achieved near-perfect agreement (Prevalence-Adjustment and Bias-Adjustment Kappa 
(PABAK) = 1), while ventricular activity remained unreliable (κ = −0.11). In Scenarios C (30%) 
and D (25%), accuracy was lower, and agreement between baseline and second-month 
responses remained fair (κ = 0.285 and 0.3, respectively), indicating limited consistency in 
complex decision-making tasks.

Conclusion: This study provides the fir t systematic evaluation of ChatGPT-4o in EGM 
interpretation, demonstrating promising accuracy and reliability in structured tasks. 
While the model integrated contextual data well, its adaptability to complex cases was 
limited. Further optimization and validation are needed before clinical use.

Keywords: Artificial intelligence, large language models, intracardiac electrograms, 
pacemaker, ChatGPT-4o

INTRODUCTION

Intracardiac electrograms (EGMs) offer a highly detailed view of cardiac electrical 
activity, serving as a critical tool in the management of pacemaker (PM) patients. 
However, their intricate nature often necessitates specialized expertise, which 
may not always be readily available among clinicians. This gap in knowledge and 
expertise poses a signifi ant challenge to achieving accurate and timely diagno-
ses, potentially impacting patient outcomes. Moreover, the global surge in car-
diac implantable electronic device (CIED) procedures has placed increasing strain 
on healthcare systems, both in terms of clinical capacity and financial resources. 
These combined factors underscore the urgent need for innovative solutions to 
streamline EGM interpretation and improve the efficiency of CIED management 
in modern healthcare settings.

Approximately, 25% of patients miss follow-ups within the fir t year, with access 
challenges particularly affecting elderly, disabled, and rural populations. Remote 
device management for CIED, including routine remote follow-up and event-trig-
gered remote monitoring (RM), has improved access and follow-up compliance. 
The coronavirus disease 2019 (COVID-19) pandemic underscored the importance 
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of remote healthcare for overcoming logistical barriers.1-3 
Studies like TRUST and CONNECT demonstrate RM’s effec-
tiveness in detecting arrhythmias, often matching or sur-
passing in-person visits.4,5 However, current systems rely on 
rigid algorithms that lack real-time contextual adaptability, 
leading to delays, increased workloads, and potential diag-
nostic errors.

Artificial intelligence (AI), particularly large language mod-
els (LLMs), holds transformative potential for addressing 
these challenges. While extensively used in electrocardio-
gram (ECG) interpretation, LLMs’ application in analyzing 
the more complex EGMs remains underexplored.6-9 Artificial
intelligence tools like ChatGPT-4o can automate the inter-
pretation of such datasets, identifying patterns beyond the 
scope of conventional algorithms. With its ability to inte-
grate textual and visual data, ChatGPT-4o emerges as a 
valuable diagnostic aid, especially in resource-limited set-
tings lacking specialized expertise.

This study evaluates ChatGPT-4o’s ability to interpret intra-
cardiac EGMs from PM patients using a scenario-based 
framework. The assessment focuses on its accuracy, reli-
ability, and adaptability across varying clinical complexities. 
Findings provide insights into how LLMs could be integrated 
into clinical workfl ws to support diagnostics and improve 
patient care.

METHODS

Twenty PM EGM examples were sourced from The European 
Heart Rhythm Association (EHRA) Book of Pacemaker, ICD, 
and CRT Troubleshooting, a key reference for cardiologists 
specializing in cardiac devices.10 This resource, commissioned 
by the EHRA and developed under the guidance of the EHRA 
Education Committee, features tests structured as multiple-
choice questions with correct answers and brief explana-
tions. Each case-based question comprises 4 sections:

1. Case description/device parameters: This part out-
lines the patient’s clinical condition and the device 
parameters.

2. EGM: This section presents the device EGM record that 
serves as the foundation of the case.

3. Question sentence.
4. Multiple-choice questions.

The fir t 20 EGM cases were selected sequentially without 
specific cri eria, avoiding randomization or stratifi ation by 
difficult , which may impact generalizability. ChatGPT-4o, 
utilizing image processing, interpreted these cases across 
4 scenarios of increasing complexity, ranging from iso-
lated EGM analysis to clinical context and multiple-choice 
formats.

Ten predefined features were assessed in Scenarios A and B, 
while Scenarios C and D required 20 correct responses per 
scenario across all cases.

Four scenarios based on the same case were presented to 
the model at 1-week intervals:

1. Scenario A involves “only the visualized EGM data’’ with-
out patient history or device parameters (Supplementary 
Figure 1A).

2. Scenario B adds “clinical context and device parame-
ters’’ to aid interpretation (Supplementary Figure 1B).

3. Scenario C further includes “a specific question’’ 
requiring an answer based on the provided data 
(Supplementary Figure 1C).

4. Scenario D incorporates all previous elements but 
requires selecting the correct answer from “multiple-
choice options’’ (Supplementary Figure 1D).

Intracardiac electrograms images were presented in their 
original format, as extracted from the source material, with-
out modifi ations such as preprocessing, resizing, or fil ering. 
The resolution and clarity of these images were consistent 
with those in the EHRA book. This ensured that the model’s 
performance was evaluated under realistic conditions.

The procedures detailed above were conducted again over 
a second month, with each scenario spaced 1 week apart, 
to evaluate the consistency of the model’s responses. This 
repeated evaluation allowed for an assessment of intra-model 
variability and potential learning effects across sessions.

Evaluation Method
In the fir t 2 scenarios, an assessment was conducted to 
determine whether the features in the EGM were accurately 
identified. This analysis was based on 10 specific criteria 
(Table 1). ChatGPT-4o’s responses to 20 EGM cases were 
evaluated using a structured accuracy assessment:

1. False answer.
2. True answer.
3. No answer (N/A).
4. No malfunction or pseudomalfunction detected (N/R)

In the third and fourth scenarios, the assessment aimed to 
determine if the model (ChatGPT-4o) could accurately give 
or select the correct answer from the given choices (False or 
True). Scenarios C and D were evaluated based on whether 
the model selected the correct answer for each case. This 
grading system ensured a detailed and structured analysis 
of the model’s performance in interpreting EGM data. The 
responses to all 4 scenarios were evaluated by 2 independent 

HIGHLIGHTS
• ChatGPT-4o was systematically evaluated for the fir t 

time in EGM interpretation and demonstrated promis-
ing accuracy rates.

• The model’s accuracy was 57% when using only EGM 
data, increasing to 66% when clinical context and device 
parameters were included.

• While high reliability was observed in critical variables, 
the model’s consistency remained limited, particu-
larly in complex decision-making processes and certain 
rhythm parameters.

• Advanced optimization and large-scale validation stud-
ies are required for the integration of large language 
models (LLMs) into clinical practice.



Anatol J Cardiol 2025; XX(X): 1-10  Bozyel et al. LLMs in Intracardiac EGM Interpretation: Advancing Cardiac Diagnostics

3

cardiac device specialists. In cases of disagreement, a third 
expert was consulted. The inter-rater reliability between 
evaluators was not quantified, but consensus-based adjudi-
cation was employed to resolve discrepancies.

ChatGPT-4o
ChatGPT-4o, developed by OpenAI, is an advanced LLM 
designed to process and generate human-like text. Built on 
deep learning techniques, it supports a wide range of tasks, 
including natural language understanding, text generation, 
and image analysis. Its multimodal capabilities allow it to 
integrate and analyze both visual and textual data, making 
it particularly suitable for complex, data-rich applications.

In this study, ChatGPT-4o was tasked with interpreting EGM 
visuals alongside accompanying textual information, such 
as clinical context and device parameters. This dual-input 
approach leveraged the model’s ability to synthesize diverse 
data types, providing a comprehensive framework for evalu-
ating diagnostic accuracy. By combining visual signal inter-
pretation with textual analysis, ChatGPT-4o demonstrated 
its potential as a versatile tool for improving the interpreta-
tion of EGMs and supporting clinical workfl ws.

Repeated testing over a second month was performed to 
evaluate intra-model consistency. As ChatGPT-4o does not 
retain memory between sessions, this design does not reflect
model learning or adaptation. While the model itself was the 
subject of analysis, it was not used to generate any scientific
content or interpret study results. Language polishing was 
performed with AI support, but all intellectual and analytical 
contributions were made by the authors.

Statistical Analysis
All statistical analyses were conducted using Python version 
3.1.4 (Python Software Foundation, USA). The distributions of 
responses in Scenarios A and B were presented with the per-
centages of answers (True, False, Non-Relevant, No Answer) 
to evaluate the model’s baseline performance across cate-
gories. Responses were categorized using the classifi ation 
system described previously. For demonstration of percent-
ages, the authors used pie charts and stacked bar charts. For 
comparisons and agreement analyses of answers between 
scenarios, true responses were compared with the other 
responses. Percentage differences between Scenario A and 
Scenario B were calculated for each variable, and the results 
were visualized using a heatmap to provide a clear compari-
son of performance variations across categories.

Because the answers were paired (dependent) and categorical, 
McNemar’s test was used for comparisons between Scenarios 
A-B and C-D, as well as between baseline and second-month 
percentages. Agreement between baseline and second-month 
responses was assessed using Cohen’s Kappa and PABAK 
(Prevalence-Adjustment and Bias-Adjustment Kappa) analyses, 
with interpretations provided to classify the degree of agree-
ment (e.g., poor, slight, moderate, substantial, and perfect).

It was determined that Cohen’s Kappa has a prominent limi-
tation in data with different prevalences (e.g. very high or 
very low) and in non-balanced data.11,12 Therefore, it is advised 
to use PABAK or Gwet’s AC1 in such cases. Since the authors’ 
data has a non-balanced distribution between answer 
groups, the authors aimed to demonstrate in this study that 
Cohen’s Kappa has signifi ant limitations when applied to 
imbalanced data, which can lead to incorrect results, and to 
show the superiority of using PABAK in such cases instead. 
These methods allowed for a comprehensive assessment 
of performance consistency and reliability across scenarios 
and time points. All figu es were reviewed during manuscript 
preparation to ensure clarity, consistency in axis labels, and 
alignment between visual content and descriptive text.

This study employed the AI-based LLM ChatGPT-4o 
(OpenAI) for the interpretation of EGMs. Additionally, 
AI-assisted tools were used for language editing to improve 
the clarity and readability of the manuscript. However, all 
scientific content, analysis, and conclusions were generated 
by the authors without AI influen e.

Transparency Statement
ChatGPT-4o was evaluated solely as the subject of analysis 
in this study. It was not used to generate, interpret, or revise 
any scientific content related to study design, data analysis, 
or conclusions. All scientific reasoning, methodology devel-
opment, and diagnostic interpretation were performed 
independently by the authors. Minor language editing was 
conducted using external AI-based proofreading tools 
(ChatGPT-4o and Grammarly), limited to stylistic and gram-
matical refineme t only.

RESULTS

Scenarios A and B: Distribution of Answers and Variable 
Performance
The distributions of answers across Scenarios A and B highlight 
key differences in performance and engagement. In Scenario 

Table 1. Key Evaluation Criteria for Electrogram (Intracardiac Electrograms) Interpretation

1) Understanding Can it understand that it is an electrocardiogram trace?

2) Marker annotations Can it interprete the specific ann tations markers ?

3) Atrial Activity Can it provide an accurate description of atrial activation?

4) Ventricular activity Can it provide an accurate description of ventricular activation?

5) Chamber Can it identify how many chambers the device has?

6) Pacing mode Can it identify the device pacing mode?

7) Timing Intervals Can it identify the timing intervals between events ?

8) Malfunction Can it accurately identify the existing malfunction?

9) Pseudomalfunction Can it accurately identify the existing pseudomalfunction?

10) Synchronizations Can it offer any insights into the atrioventricular relationship?
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Figure 1. Performance metrics across scenarios. (A) Distribution of answers in scenario A. (B) Distribution of answers in scenario 
B. (C) Distribution of correct answers across key variables in Scenario A. (D) Distribution of correct answers across key variables in 
Scenario B. (E) Accuracy Improvement (Heatmap) Between Scenario A and Scenario B across features.
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A, the majority of responses (57%) were True, while 19.5% 
were categorized as “No Answer,” 15% as “Non-Relevant,” 
and 8.5% as “False.” Conversely, in Scenario B, the percent-
age of True answers improved to 66%. The proportion of “No 
Answer” responses decreased to 8%, while “False” responses 
increased slightly to 11% (Figures 1A and B). These visual distri-
butions clearly illustrate how the inclusion of clinical context 
in Scenario B not only improved accuracy but also reduced 
uncertainty, as reflec ed by the decline in “No Answer” rates.

Figures 1C and D illustrate the distribution of correct 
responses across key variables for Scenarios A and B, with 
statistical comparisons summarized in Table 2. The under-
standing variable maintained perfect accuracy (100%) 
across both scenarios, while Marker Annotations improved 
slightly from 85% to 90%, though this was not statistically 
signifi ant. The most notable improvements were observed 
in pacing mode, which increased from 35% to 85% (P = .002), 
and chamber, which rose from 55% to 90% (P = .039) in 
Scenario B. Persistent challenges were noted in malfunc-
tion (remaining at 10%) and pseudomalfunction, which 
increased slightly from 25% to 30%, both without statistical 
signifi ance. Overall, the most pronounced and persistent 
disparity was observed in pacing mode, while other features 
showed either stability or minor, non-signifi ant variations. 
Figure 1A-D illustrate how contextual enrichment improved 
the distribution of response types and diagnostic accuracy 
across key variables, particularly by reducing uncertainty 
and increasing correct classifi ations.

The percentage differences between Scenarios A and B are 
visualized in Figure 1E. Pacing mode and chamber demon-
strated the largest gains, with improvements of +50% and 
+35%, respectively. The most prominent improvements in 
diagnostic accuracy were observed in pacing mode (+50%) 
and chamber identifi ation (+35%), providing key insight into 
the model’s enhanced performance when contextual infor-
mation is included. In contrast, atrial activity exhibited a 
decline of −10%, though this was not statistically signifi ant 
(P = .5). Other variables, such as marker annotations (+5%) 
and synchronizations (+10%), showed modest improvements. 

The heatmap format in Figure 1E enables a side-by-side 
comparison of variable-specific accuracy changes, high-
lighting the model’s strengths and limitations across diag-
nostic domains.

Accuracy Comparison Between Scenarios C and D
In Scenario C, 30% of responses were True, while in Scenario 
D, this rate decreased to 25% (Figure 2). Statistical analysis 
indicates that this difference is not signifi ant (P = 1). Both 
scenarios demonstrate low accuracy, highlighting the need 
for further improvement. In the second month, accuracy 
in Scenario C was 30% and increased to 50% in Scenario D 
(P = .125), indicating no signifi ant difference or improvement 
between the scenarios (Table 3).

Figure 3 demonstrates ChatGPT’s ability to interpret an 
EGM, identifying ventricular oversensing characterized by 
irregular R-R intervals and pacing inhibition in a Ventricular 
Demand Pacing with Dual atrial sensing (VDD) PM.

Agreement Metrics for Baseline and Second-Month 
Responses
Tables 4 and 5 summarize the agreement metrics comparing 
baseline and second-month responses in Scenarios A and B 
across 10 key features.

In Scenario A, agreement levels ranged from poor to sub-
stantial, with substantial agreement observed for atrial 
activity (kappa = 0.7) and synchronizations (kappa = 0.7), 
indicating high reliability. Moderate agreement was noted 
for pseudomalfunction (kappa = 0.47), while fair or slight 
agreement was seen for timing intervals (kappa = 0.4) and 
Pacing Mode (kappa = 0.08). Poor agreement was identi-
fied for chamber (kappa = −0.26) and ventricular activity 
(kappa = −0.25).

In Scenario B, agreement ranged from poor to almost per-
fect, with understanding (PABAK = 1) achieving almost per-
fect agreement, reflecting high consistency. Moderate 
agreement was noted for pseudomalfunction (kappa = 0.6) 
and timing intervals (kappa = 0.4), while fair agreement was 
observed for pacing mode (kappa = 0.3) and synchronizations 

Table 2. Differences in Accuracy Rates Between Scenarios A and B at Baseline and Second Month

Key Features Scenario A Baseline Scenario B Baseline P
Scenario A

Second Month
Scenario B

Second Month P

Understanding 1 1 Nan 0.95 1  

Marker annotations 0.85 0.9 1 0.95 0.8 .25

Atrial activity 0.65 0.55 .5 0.5 0.55 1

Ventricular activity 0.8 0.8 1 0.8 0.8 1

Chamber 0.55 0.9 .039 0.75 0.9 .453

Pacing mode 0.35 0.85 .002 0.1 0.6 .002

Timing intervals 0.6 0.55 1 0.5 0.5 1

Malfunction 0.1 0.1 1 0 0.1  

Pseudomalfunction 0.25 0.3 1 0.25 0.15 .625

Synchronizations 0.55 0.65 .625 0.4 0.55 .453
Most diagnostic errors in Scenario A were concentrated in pacing mode identifi ation, which showed the lowest baseline accuracy (35%) and the 
most statistically signifi ant improvement in Scenario B (P = .002). Errors related to marker interpretation were also observed but were less 
pronounced.
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(kappa = 0.3). Poor agreement was evident for ventricular 
activity (kappa = −0.11).

Overall, Scenarios A and B highlighted strong reliability in 
certain features, such as understanding and atrial activity, 
but also signifi ant variability in features like chamber and 
ventricular activity.

Table 6 summarizes the agreement metrics for baseline and 
second-month responses in Scenarios C and D. Both sce-
narios demonstrated ‘Fair agreement,’ with a Cohen’s kappa 
value of 0.285 for Scenario C and 0.3 for Scenario D. These 
findings indicate moderate alignment between observers, 
suggesting no substantial variability across the evaluations.

DISCUSSION

Our study evaluates the performance of ChatGPT-4o in 
interpreting intracardiac EGMs and provides important 
findings on how the model can support physicians working 
with cardiac devices. The accuracy rate in Scenario A was 

57%, increasing to 66% in Scenario B when additional con-
textual information and device parameters were provided. 
This improvement highlights the role of enriched contex-
tual data in enhancing the model’s diagnostic performance. 
Additionally, the proportion of “No Answer” responses 
decreased from 19.5% to 8%, indicating the model’s increased 
ability to generate responses when given additional infor-
mation. However, the rise in “False” responses (from 8.5% to 
11%) suggests that the model sometimes misinterprets con-
textual data, leading to incorrect predictions.

The model demonstrated high accuracy in specific vari-
ables, particularly in pacing mode, which reached 85% in 
Scenario B, suggesting that contextual support can signifi-
cantly enhance diagnostic precision. However, in the sec-
ond-month evaluation, the accuracy rate declined to 60%, 
indicating potential consistency issues in long-term perfor-
mance. Similarly, the chamber variable showed a signifi ant 
improvement from 55% to 90% at baseline, but by the second 
month, this difference was no longer statistically signifi-
cant (P = .453). These findings suggest that while the model 
benefits from additional contextual information, its ability 
to retain and consistently apply this knowledge over time 
remains limited.

The model’s low accuracy in more complex tasks, particularly 
in Scenarios C and D (30% and 25%, respectively, at baseline), 
is noteworthy. This decline in performance can be attrib-
uted to several factors, including the requirement for direct 
answer selection and the complexity of the clinical context. 
Despite the addition of visual EGM data, text-based clinical 
information, and specific questions, accuracy in Scenario C 
remained stagnant at 30% (6 correct answers) between the 
baseline and second-month evaluations. While Scenario D 

Figure 2. Comparison of true and false response counts in Scenarios C and D.

Table 3. Differences in Accuracy Rates Between Scenarios C 
and D at Baseline and Second Month

 

Scenario C
Total True Answers 

(Accuracy Rate)

Scenario D
Total True Answers 

(Accuracy Rate) P

Baseline 6 (0.3) 5 (0.25) 1

Second 
month

6 (0.3) 10 (0.5) .125

In Scenarios C and D, diagnostic errors primarily resulted from failures 
to correlate EGM signals with device algorithm behavior—particularly 
in identifying pacing inhibition, mode switching, and atrial 
undersensing—highlighting the model’s challenges in temporal and 
logic-based reasoning.
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demonstrated an improvement to 50% (10 correct answers) 
in the second month, this change was not statistically sig-
nifi ant (P = .125). The combination of visual and text-based 
data, along with specific questions and potentially similar 
answer options, may have increased the cognitive load on 

the model, making it more challenging to synthesize and 
prioritize relevant information efficie tly. These findings
highlight the need for enhanced multimodal learning strat-
egies that can improve the model’s ability to extract critical 
insights from complex datasets.

Figure 3. Example of ChatGPT-assisted EGM interpretation. This figu e illustrates ChatGPT’s interpretation of an EGM showing 
ventricular oversensing, characterized by irregular R-R intervals and pacing inhibition in a patient with a VDD PM.
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In Scenario D, the model exhibited persistent difficulties in 
EGM interpretation, particularly in timing analysis, sens-
ing detection, and PM algorithm recognition. It frequently 
misclassified pacing behaviors, such as AV crosstalk, mode 
switching, and noise reversion, leading to incorrect conclu-
sions about pacing inhibition and atrial tracking. Additionally, 
sensing issues, particularly ventricular and atrial undersens-
ing, resulted in misdiagnoses of AV block, device malfunc-
tion, or loss of capture. The model also struggled with pacing 
mode classifi ation and threshold determination, affecting 
its ability to assess capture consistency and pacing behav-
ior. These findings suggest that the model still lacks the 
ability to correlate programmed device settings with real-
time EGM findings and distinguish between similar pacing 
abnormalities. While its capacity to process EGM data is evi-
dent, improving its integration of device-specific algorithms 
and refining structured decision pathways are essential to 
optimize its accuracy in complex pacing scenarios. Taken 
together, these results indicate that despite encouraging 

performance in simpler settings, the model’s current reliabil-
ity remains insufficie t for clinical decision support—par-
ticularly in complex or high-risk pacing scenarios. Further 
refineme t and device-specific training are likely required 
for safe and effective clinical deployment.

The reliance on physician-centered approaches for EGM 
interpretation in PM evaluations poses challenges such as 
variability in accuracy, time constraints, and potential delays 
in patient care; however, the adoption of remote device 
management for CIEDs, has signifi antly improved access 
and follow-up compliance. Remote monitoring systems are 
recommended to reduce in-offi e visits and extend follow-
up intervals to up to 24 months. However, RM faces several 
challenges, including staff shortages, organizational inef-
ficiencie , and data overload. PMs generate a high volume 
of non-urgent alerts, many of which result from false posi-
tives due to arrhythmia misclassifi ation, while Implantable 
Cardioverter Defibrilla ors (ICDs) produce fewer but 

Table 4. Agreement Metrics Comparing Baseline and Second-month Responses in Scenario A across 10 Key Features

Key Features
McNemar

P Cohen’s Kappa PABAK Kappa Interpretation PABAK Interpretation

Understanding N/A 0 0.9 Slight agreement Almost perfect agreement

Marker annotations 0.479500122 0.459459459 0.8 Moderate agreement Substantial agreement

Atrial activity 0.248213079 0.7 0.7 Substantial agreement Substantial agreement

Ventricular activity 0.72367361 −0.25 0.2 Poor agreement Slight agreement

Chamber 0.386476231 −0.263157895 -0.2 Poor agreement Poor agreement

Pacing mode 0.130570018 0.0789473684 0.3 Slight agreement Fair agreement

Timing intervals 0.683091398 0.4 0.4 Fair agreement Fair agreement

Malfunction N/A 0 0.8 Slight agreement Substantial agreement

Pseudomalfunction 0.617075077 0.466666667 0.6 Moderate agreement Moderate agreement

Synchronizations 0.248213079 0.705882353 0.7 Substantial agreement Substantial agreement
PABAK, prevalence-adjustment and bias-adjustment kappa.

Table 5. Agreement Metrics Comparing Baseline and Second-Month Responses in Scenario B across 10 Key Features

Key Features McNemar P Cohen’s Kappa PABAK Kappa Interpretation PABAK Interpretation

Understanding N/A 1 1 Almost perfect agreement Almost perfect agreement

Marker annotations 0.479500122 0.615384615 0.8 Substantial agreement Substantial agreement

Atrial activity 0.683091398 0.393939394 0.4 Fair agreement Fair agreement

Ventricular activity 0.479500122 0.6875 0.8 Substantial agreement Substantial agreement

Chamber 0.617075077 −0.111111111 0.6 Poor agreement Moderate agreement

Pacing mode 0.130570018 0.186046512 0.3 Slight agreement Fair agreement

Timing intervals 1 0.,3 0.3 Fair agreement Fair agreement

Malfunction 0.479500122 0.444444444 0.8 Moderate agreement Substantial agreement

Pseudomalfunction 0.37109337 0.305555556 0.5 Fair agreement Moderate agreement

Synchronizations 0.683091398 0.381443299 0.4 Fair agreement Fair agreement
PABAK, prevalence-adjustment and bias-adjustment kappa.

Table 6. Agreement Metrics Comparing Baseline and Second-Month Responses in Scenarios C and D

 McNemar P Cohen’s Kappa PABAK Kappa Interpretation PABAK Interpretation

Scenario C .683091398 0.285714286 0.4 Fair agreement Fair agreement

Scenario D 1 0.30000000000000004 0,3 Fair agreement Fair agreement
PABAK, prevalence-adjustment and bias-adjustment kappa.
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predominantly critical alerts, often caused by oversensing or 
lead noise.13-15 These inefficiencies increase the workload for 
clinicians, highlighting the need for AI-driven solutions that 
can automate data processing, prioritize alerts, and enhance 
diagnostic accuracy to improve the efficiency f RM.

Although previous studies have demonstrated the potential 
of AI and LLMs in cardiac diagnostics, their approaches and 
focuses vary signifi antly (Table 7). Ferreira et al6 developed 
software utilizing optical character recognition (OCR) and 
natural language processing (NLP) to analyze CIED reports, 
extracting patient details, device parameters, and event 
data. While their system processed 30 reports in under 5 min-
utes, it focused solely on text-based report analysis rather 
than direct signal interpretation, limiting its diagnostic rel-
evance.6 Similarly, Pang et  al7 introduced a framework that 
transforms surface ECG signals into textual patterns for 
arrhythmia classifi ation, achieving an accuracy of 96.20% 
on a public dataset. However, their study focused on surface 
ECGs rather than intracardiac EGMs and did not assess diag-
nostic reliability in real-world clinical settings.

Günay et  al9 evaluated GPT-4-based ChatGPT for ECG 
interpretation using 40 multiple-choice questions derived 
from clinical cases, reporting an impressive 90.8% accuracy. 
However, since their model relied on textual descriptions 
rather than direct analysis of ECG images, its applicability in 
visual signal interpretation remained limited.8 Another study 
trained LLMs on ECG-report alignment tasks to improve 
heart failure (HF) risk prediction from 12-lead ECG data. By 
correlating ECG signals with corresponding clinical reports, 
the model effectively identified risk markers, offering prom-
ising insights for long-term risk assessment. However, this 
approach focused on population-level predictions rather 
than immediate diagnostic applications, making it less rel-
evant to real-time EGM interpretation.9

Our study is the fir t to evaluate ChatGPT-4o’s performance 
in interpreting intracardiac EGMs across varying clinical 
contexts, highlighting its potential as a diagnostic aid. The 
model demonstrated reasonable accuracy and reliability, 
particularly in visualized EGM analysis, providing a strong 
foundation for addressing diagnostic gaps in cardiology. The 
authors’ approach differs from previous studies by integrat-
ing both visual and contextual data, assessing the model’s 
adaptability across diverse clinical settings, and identifying 
critical areas for improvement.

AI-assisted EGM analysis should integrate both visual and 
structured text-based data to enhance accuracy. The ideal 
format—raw waveforms vs. structured parameters—
remains uncertain, as different manufacturers use distinct 
sensing and pacing algorithms. Instead of a universal model, 
fine-tuned models per manufacturer may improve reliability. 
AI’s scope is also crucial—should it analyze full device data 
or focus on specific tasks like capture loss detection? While 
full autonomy is a long-term goal, a structured approach 
incorporating contextual data (e.g., ECGs, patient exams, 
imaging) may enhance interpretation. A recent study have 
explored the role of extended passive and active EGM 
recordings in optimizing device diagnostics, highlighting 
the importance of systematic data processing for improved 
detection of anomalies.16 In future clinical workfl ws, models 
like ChatGPT-4o could be integrated into remote monitor-
ing systems to assist in alert triage or used as point-of-care 
diagnostic aids during ambulatory device evaluations. 
These applications would benefit from further optimization, 
including manufacturer-specific fine-tuning and structured 
feedback loops, to ensure safe and effective deployment. 
Even at a basic level, AI-driven anomaly detection can sup-
port patient safety and clinical workfl ws.

Our design also has methodological implications. First, the 
EGM cases were selected sequentially from the EHRA book 
without randomization or balancing by difficult . Although 
this approach ensured real-world representativeness, it 
may have introduced selection bias and limited generaliz-
ability. Second, the repetition of the same cases over time 
was intended solely to assess intra-model decision consis-
tency. Since ChatGPT-4o lacks session memory, this pro-
cess cannot be interpreted as fine-tuning or learning. These 
design elements should be refined in future research. This 
study evaluated the model without fine-tuning, yet it dem-
onstrated self-correction with feedback, highlighting its 
potential for structured training (Supplementary File 1). 
With further optimization, AI models could surpass human 
performance, particularly in electrophysiology and cardiac 
device troubleshooting, where expertise varies. For LLMs to 
integrate into clinical workfl ws, continuous learning and 
real-time clinician feedback are essential. Artificial intel-
ligence-driven adaptive systems can refine performance, 
enhance RM, and automate data interpretation to reduce 
diagnostic errors. Future research should focus on fine-tu -
ing models with diverse datasets to improve generalizability. 

Table 7. Comparative Overview of Recent Artificial I telligence/Large Language Models-Based Electrocardiogram and 
Intracardiac Electrograms Interpretation Studies

Study Data Type Input Modality Diagnostic Focus Model Used Key Outcome

Günay 
et al, 2024

Surface ECG case 
texts

Text-only ECG diagnosis (MCQ-
based)

ChatGPT (GPT-4) 90.8% accuracy on 40 ECG 
case questions

Pang et al, 
2023

Surface ECG signals Signal → Text 
(via CSSOTP)

Arrhythmia 
classifi ation

CSSOTP-based 
LLM

96.2% accuracy on public 
ECG dataset

Ferreira 
et al, 2021

CIED reports OCR + Text Report-based event and 
parameter extraction

Custom AI/NLP Processed 30 CIED reports in 
under 5 minutes

Current 
study

Intracardiac EGMs 
(image) + clinical 
data

Visual + Textual Layered EGM 
interpretation (4 
scenarios)

ChatGPT-4o Accuracy improved from 57% 
to 66% with context; intra-
model agreement assessed
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As AI advances, its role in cardiology is expected to trans-
form diagnostics, optimize precision, and improve patient 
outcomes.

Study Limitations
This study has several limitations that warrant consideration. 
The model was evaluated on a relatively small dataset of 20 
EGM cases which may not fully capture the variability and 
complexity of real-world clinical scenarios. Moreover, it was 
not tested in real-time clinical settings, where factors such 
as noise, incomplete data, and variations across device types 
could signifi antly impact performance. The dataset also 
lacked representation of all PM brands and models, limit-
ing the model’s generalizability to a wider range of devices. 
Furthermore, the absence of direct comparison with human 
experts restricts the ability to benchmark its diagnostic utility 
effectively. Another limitation is the sequential selection of 
EGM cases without randomization or difficulty stratifi ation, 
which may affect generalizability. Repeated testing assessed 
decision stability, not learning, as ChatGPT-4o lacks memory. 
Finally, while AI tools aided in language editing, all scientifi  
content and interpretations were author-generated.

CONCLUSION

This study represents the fir t systematic evaluation of 
ChatGPT-4o’s ability to interpret intracardiac EGMs, demon-
strating promising potential as a diagnostic support tool. The 
model exhibited reasonable accuracy and reliability, particu-
larly in scenarios involving visualized EGM data. However, fur-
ther optimization and large-scale validation are necessary to 
fully integrate LLM-based models into clinical practice.
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Supplementary Figure  1 . ChatGPT’s Analysis of Pacemaker EGMs Across Scenarios A to D: Interpretation and Observations 
(Scenario A: Isolated EGM interpretation, Scenario B: EGM with clinical context, Scenario C: EGM with clinical context and 
targeted question, Scenario D: EGM with clinical context, targeted question, and multiple-choice options).



Supplementary File 1. Egm Interpretation: Example Of Model Self-Correction And Structured Learning Potential.

EGM ERROR ANALYSIS REPORT

Introduction
This report outlines a sequence of events in which an initial 
incorrect response was provided during the analysis of a 
pacemaker EGM tracing. The error was subsequently identi-
fied and corrected after a detailed review. The process high-
lights the importance of recognizing atrioventricular (AV) 
relationships in interpreting pacemaker modes and provides 
actionable insights for improvement.

Case Summary
A question was presented regarding the pacing mode dem-
onstrated in an EGM tracing. The options provided were:

A. VDI
B. DDI
C. VDD
D. DDD

The correct answer was B. DDI, as the tracing indicated dual-
chamber sensing with inhibition but without tracking atrial-
sensed events (P-synchronous pacing). Initially, however, the 
response identified the pacing mode as D. DDD, which was 
incorrect.

ERROR ANALYSIS

Upon review, the following factors contributed to the initial 
incorrect response:

1. Misinterpretation of AV Relationship
The initial analysis incorrectly assumed the presence of 
P-wave tracking, a hallmark of the DDD mode. However, 
the tracing demonstrated that ventricular pacing was inde-
pendent of atrial-sensed events, indicating the absence of 
P-synchronous pacing, a defining eature of the DDI mode.

2. Bias Toward Commonly Used Modes



The initial response was influen ed by the fact that DDD is 
the most commonly used dual-chamber pacing mode. This 
bias led to an assumption rather than a thorough evaluation 
of the specific t acing provided.

3. Overlooking Key Details in the Tracing
Critical features of the tracing, such as the consistent pac-
ing rate determined by the lower rate limit (LRL) and the 
lack of atrial-sensed event tracking, were not adequately 
considered.

Correction and Insights
After being prompted to re-evaluate the tracing, a detailed 
review was conducted, leading to the identifi ation of the 
following key observations:

1. Absence of P-Synchronous Pacing
The ventricular pacing rate remained fi ed at the LRL, irre-
spective of atrial-sensed events, confirming that P-wave 
tracking was not present.

2. Inhibition Without Tracking
The tracing demonstrated that ventricular pacing was inhib-
ited by intrinsic ventricular events but not triggered by atrial-
sensed events, consistent with the DDI mode.

3. Clinical Context Alignment
The DDI mode is particularly suitable for patients with par-
oxysmal atrial arrhythmias, such as atrial fibrillation, where 
tracking atrial events could exacerbate ventricular pacing.

These observations confirmed that the correct answer was 
B. DDI, aligning with the clinical scenario and the EGM trac-
ing provided.

Lessons Learned
This process underscored the following key takeaways:

1. Systematic Analysis of AV Relationships
Accurate determination of pacing modes requires careful 
evaluation of the relationship between atrial and ventricu-
lar events, particularly the presence or absence of P-wave 
tracking.

2. Avoiding Assumptions
Commonly used pacing modes should not be assumed with-
out detailed verifi ation of the EGM data.

3. Structured Approach to EGM Interpretation
A systematic methodology, including the identifi ation of 
sensing and pacing patterns, AV delays, and response to 
intrinsic events, is critical for accurate analysis.

CONCLUSION

The error in the initial response and its subsequent correc-
tion highlight the importance of meticulous analysis and 
continuous learning in the interpretation of pacemaker EGM 
tracings. This experience serves as a valuable example for 
refining analysis skills and enhancing diagnostic accuracy in 
similar scenarios.


