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The effect of nandrolone treatment with and without enforced 
swimming on histological and biochemical changes in the heart 

and coronary artery of male rats

Introduction

Though they have a variety of clinical applications, testos-
terone-derived anabolic-androgenic steroids (AAS) are often 
misused by competitive athletes and bodybuilders, as well as by 
non-athletes for aesthetic purposes rather than enhancement of 
sports performance (1, 2). Investigations conducted in the previ-
ous 5 decades have documented various toxic effects of AAS in 
different organs, such as decreased levels of luteinizing hormones 
and follicle-stimulating hormones, decreased spermatogenesis, 
testicular atrophy, elevated levels of liver enzymes, and hepatic 
dysfunction, as well as liver tumors and other malignancies (3, 
4). In addition, abuse of AAS by children/adolescents causes 
premature epiphyseal closure, resulting in decreased height in 
adulthood and increased risk of musculotendinous injuries (5, 6). 
Furthermore, endocrine disorders such as accelerated matura-
tion, changes in physique and development of secondary sexual 

characteristics, glucose tolerance alteration, increase in insulin 
resistance, decreased thyroid hormones, and masculinization in 
women have also been reported to be associated with AAS use 
by athletes (7, 8). Recently, cardiovascular system abnormalities 
induced by AAS have attracted researchers’ attention. Previous 
studies indicated that AAS exposure creates adverse cardiovas-
cular effects such as hypertension, left ventricular (LV) hypertro-
phy, and impaired diastolic filling (9). Furthermore, it contributes 
to arrhythmia, erythrocytosis, lipoprotein profile alteration, and 
thrombosis (10). Some abnormalities in vascular reactivity and 
cardiovascular reflex control of cardiovascular system follow-
ing nandrolone decanoate exposure have also been reported 
(11, 12). While research on early AAS exposure focused on 
identifying specific abnormalities in the cardiovascular system, 
much of the recent attention has been directed to underlying 
mechanisms through which AAS consumption in combination 
with exercise or sedentary status contribute to cardiovascular 
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system deficits. Although some research studies have identified 
different abnormalities in the cardiovascular system as result 
of AAS exposure, precise mechanism underlying AAS-induced 
cardiovascular damage has not yet been completely clarified. 
Several studies have recently examined role of oxidative stress 
in development of AAS-induced organ abnormalities, possibly 
via formation of free radicals (13, 14). Hence, in the current study, 
we evaluated possible adverse effects of nandrolone decanoate 
on cardiac tissue of male rats at both histological and molecular 
level, and under sedentary and physical training conditions. Pro-
liferation cell nuclear antibody (PCNA) and Masson’s trichrome 
staining were applied in evaluation of histopathological altera-
tion and deoxyribonucleic acid (DNA) damage to heart tissue. 
Based on levels of oxidized low-density lipoprotein (Ox-LDL), 
nicotinamide adenine dinucleotide oxidase (NADPH oxidase), 
and homocysteine (Hcy), it was determined that oxidative stress 
had been induced in rats’ hearts through long-term monitored 
administration of nandrolone. In addition, recent studies have 
demonstrated that enforced swimming, as an example of exten-
sive exercise, leads to oxidative stress and subsequent organ 
damage (15). It has previously been shown that enforced swim-
ming caused rise in lipid peroxidation and decreased catalase 
and superoxide dismutase (SOD) levels in animal model (15, 16). 
Based on these observations, current study was also designed 
to determine whether enforced swimming augmented possible 
cardiotoxic effects of nandrolone in rats. 

Methods

Twenty-four adult male Wistar rats weighing 220±20 g were 
assigned to 3 groups (n=8 in each group): control, nandrolone, 
and nandrolone with forced swimming (NFS). Dose of 10 mg/kg 
body weight nandrolone (nandrolone ampoules) was adminis-
trated by single injection in femoral muscle, 3 times per week for 
6 weeks (Saturdays, Mondays, and Wednesdays). This dosage 
was selected based on research of Pope and Katz and corres- 
ponded to inappropriate dose administered by athletes, namely, 
10 to 100 times higher than therapeutic dose (17). Swimming 
tests were performed in a metal cylinder tank (60 cm height × 
100 cm diameter) filled with clean water of 40 cm depth and tem-
perature of 25±2°C. Animals were placed in tank individually to 
swim for 20 minutes 3 times per week (Saturdays, Mondays, and 
Wednesdays) for 6 weeks. Piece of metal (20% body weight) was 
attached to tail to prompt rats to continue swimming.

After 6 weeks of treatment, rats were anesthetized with 10% 
chloral hydrate (0.5 mL/kg body weight, intraperitoneally). Depth 
of anesthesia was assessed by pinching a hind paw.

After weighing each rat, thoracic cavity was opened and 
blood samples were collected directly from heart. Samples were 
then mixed with ethylenediaminetetraacetic acid as anticoagu-
lant substance. Blood samples were centrifuged at 4000× g for 
20 minutes within 30 minutes of collection. Without performing 
repeated freeze-thaw cycles, plasma samples were stored at 

-80°C. Next, heart was dissected. Excised heart was freed from 
fat, blood clots, and adventitial tissue and weighed. Then, entire 
LV wall (without septum) was excised from heart and weighed. 

Ventricle was divided into 2 parts for analysis. First portion 
was fixed in buffered formalin for histopathological investiga-
tion. After taking standard dehydration steps, it was embedded 
in paraffin. To conduct biochemical analysis, the other part of 
ventricle was washed with ice-cold physiological saline and 
then dried on filter papers. An ice-cold extraction buffer (10% wt/
vol), containing 50mM phosphate buffer (pH 7.4) was added and 
homogenized using Ultra Turrax (T10B; IKA-Werke GmgH & Co., 
Staufen, Germany). Homogenates were centrifuged at 10 000× 
g at 4°C for 20 minutes. Supernatant sample was obtained and 
stored at -80°C until time of analysis.

Biochemical assay
Quantity of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was 

measured using quantitative sandwich enzyme-linked immune 
assay (ELISA) method and commercial rat 8-OHdG ELISA kit 
(Cusabio, Wuhan, China) according to manufacturer’s recom-
mended protocol. Hcy level was measured using ELISA kit (Axis-
Shield, Dundee, Scotland) according to manufacturer’s guide-
lines. Assessment of level of NADPH oxidase (NOX1) in heart 
supernatant was carried out using rat NADPH Oxidase 1 (NOX1) 
ELISA Kit (Cusabio, Wuhan, China) according to manufacturer’s 
recommendations. Paraoxonase level in plasma samples was 
measured using paraoxonase assay kit, following protocol pro-
vided by manufacturer (Cusabio, Wuhan, China). Ox-LDL level of 
heart tissue was measured using sandwich ELISA kit (Merco-
dia AB, Uppsala, Sweden). Quantities of apolipoprotein (Apo) A 
and B were measured using nephelometric method and Mono 
Binding Kit (The Binding Site Group, Birmingham, England), as 
instructed by the manufacturer. The serum triglyceride and to-
tal cholesterol levels were assayed adopting colorimetric and 
enzymatic methods. Serum LDL-C and high-density lipoprotein-
cholesterol (HDL-C) were measured by applying the Biosystems 
method directly (Biosystems S.A., Barcelona, Spain). 

Histopathological examinations
For the purpose of histopathological staining, 5-μm thick 

histological sections from paraffin-embedded heart tissue 
were used. PCNA anti-body staining protocol was used to as-
say heart and coronary vessel proliferation rates. In brief, after 
taking tissue-processing steps such as deparaffinization, rehy-
dration, and gradual ethanol passage, sections of cardiac tissue 
with 5-μm thickness were stained using monoclonal anti-PCNA 
antibody (Dako A/S, Glostrup, Denmark). Optimal results were 
obtained with EnVision visualization system (Dako A/S, Glostrup 
Denmark). In addition, hematoxylin was adopted as counter-
stain. Assessment included proper negative controls. Moreover, 
2 expert pathologists independently inspected all slides. PCNA-
positive indices were regarded as indicators of muscle cell pro-
liferation.

177



In order to assess percentage of PCNA-positive indices, coro-
nary artery and all cells in each cross section of the heart were 
scored. Criteria for quality of PCNA-positive indices were as fol-
lows (18): normal (PCNA-positive indices present in less than 5% 
of muscle cells), mild (PCNA-positive indices present in less than 
25% of muscle cells), mild to moderate (PCNA-positive indices 
present in 25% to 50% of muscle cells), moderate to severe (PC-
NA-positive indices present in 50% to 75% of muscle cells), and 
severe (PCNA-positive indices present in 75% to 100% of muscle 
cells). To evaluate heart and coronary vessel fibrosis, 5 μm heart 
tissue sections were stained using Masson’s trichrome in accor-
dance with manufacturer’s instructions (Trichrome Stain Kit; Asia 
Pajohesh, Amol, Iran). Severity of tissue fibrosis was estimated 
adopting semi-quantitative method developed by Ashcroft et al. 
(19). A score was assigned ranging from 0 (normal heart) to 8 
(total fibrosis) using the following criteria: grade 0=normal heart, 
grade 1=minimal fibrosis thickening of coronary vessel walls or 
myocardial, grades 2 and 3=moderate thickening of coronary ves-
sels walls or myocardial without obvious damage to structure 
of heart tissue, grades 4 and 5=increased fibrosis with definite 
damage to architecture of heart and formation of bands or small 
masses of fibrosis, grades 6 and 7=severe distortion of structure 
and large areas of fibrosis, and grade 8=total fibrotic obliteration.

Statistical analyses
Normal distribution of data within each group was verified 

with Kolmogorov-Smirnov test using SPSS software (version 
17.0; SPSS Inc., Chicago, IL, USA). By conducting a one-way 
analysis of variance and then Tukey’s post-hoc test, statistical 
differences between groups were tested (SPSS version 17.0). 
Data obtained from each test were expressed as mean±SE, and 
p<0.05 was considered statistically significant.

Results

Serum lipid profile
Nandrolone treatment had no significant effect on plasma 

Apo A level (p<0.2) (Table 1). Plasma Apo A level significantly 
decreased in NFS group compared with nandrolone and con-
trol groups (p<0.05). Plasma Apo B levels in nandrolone and NFS 

groups were significantly higher than those of control group 
(p<0.05). In NFS group, Apo B level showed greater increase 
compared with that in nandrolone group (p<0.05). Ratio of Apo 
B/Apo A in nandrolone and NFS groups showed significant in-
crease compared with that of control group (p<0.05), and this in-
crease was more pronounced in NFS group compared with that 
of nandrolone group (p<0.5). Plasma HDL level was lower in both 
nandrolone and NFS groups compared with that of control group 
(p<0.05). Decrease of plasma HDL level was severe in NFS group 
compared with that of nandrolone group (p<0.05). Nandrolone 
and NFS group animals demonstrated significantly (p<0.05) hig- 
her plasma LDL levels compared with control animals (p<0.05). 
Additionally, NFS rats showed significantly higher plasma LDL 
level compared with nandrolone rats. Plasma cholesterol levels 
were significantly higher in nandrolone and NFS groups com-
pared with control group (p<0.05). Cholesterol level in forced 
swimming group along with nandrolone group increased com-
pared with that of nandrolone group (p<0.01). Triglyceride level 
showed no significant difference among different groups.

Heart tissue parameters
Quantity of Ox-LDL and NADPH oxidase in heart tissue in-

creased significantly in nandrolone and NFS groups compared 
with that of control group (p<0.05) (Table 2). Amount of NADPH ox-
idase was significantly higher in NFS group compared with nan-
drolone group (p<0.02). Level of 8-OHdG in heart tissue was higher 
in both nandrolone and NFS groups compared with that of control 
group (p<0.05). No significant difference was found between nan-
drolone group and NFS group regarding 8-OHdG in heart tissue. 
Heart tissue Hcy level showed significant increases in both nan-
drolone and NFS groups compared with control group (p<0.05). 
Elevation of Hcy level in NFS group was more pronounced than 
that of nandrolone group. Neither nandrolone nor induced exer-
cise group had change in plasma paraoxonase level (p<0.05).

After 6-week experimental period, ratio of LV weight (mg) 
to body weight (g) in control, nandrolone, and NFS groups 
were 1.1±0.02, 1.38±0.05, and 1.4±0.05, respectively. Ratio of LV 
weight to body weight, as an indicator of ventricular hypertro-
phy, showed significant increase in nandrolone and NFS groups 
compared with control group (p<0.05). 
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Table 1. Serum lipid profile changes in different groups

  Control Nandrolone Nandrolone+swim F (2, 15) P

Apo A, mg/L 0.99±0.009 0.98±0.02 0.88±0.01*† 6.38 0.001

Apo B, mg/L 0.41±0.003  0.44±0.01* 0.58±0.01*† 57.33 0.01

Apo B/Apo A 0.41±0.006 0.45±0.05* 0.64±0.018*† 12.93 0.001

HDL, mg/dL 41.83±0.47 38.16±0.7* 34.33±0.84*† 39.9 0.001

LDL, mg/dL 89±0.6 96±0.3* 103±0.8*† 10.83 0.002

Cholesterol, mg/dL 99.8±0.6 109±2.8* 113±2.7*† 4.93 0.05

Triglyceride, mg/dL 90.5±7.28 84.16±5.7 86.83±6.03 1.8 0.19
Apo - apolipoprotein, HDL - high-density lipoprotein, LDL - low-density lipoprotein
Values are mean ±SE for 8 rats per group. *Denotes significant difference (P<0.05) compared to control. †Denotes significant difference (P<0.05) compared to nandrolone group
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Histopathological changes
Figure 1 shows percentage of cardiac muscle cell and coro-

nary artery smooth muscle cell proliferation (PCNA-positive 
indices) in experimental group. Percentage of PCNA-positive 
indices significantly increased in coronary smooth muscle cell 
of rats treated with nandrolone (50.3±3.6) and rats in NFS group 
(50.2±.3) compared with control group (4.8±.3).

Ratio of proliferated cardiac myocytes (PCNA-positive in-
dices) to heart tissue of control, nandrolone, and NFS groups 
was 8±0.8%, 46.6±0.6%, and 56±4%, respectively (Fig. 1). Nan-
drolone administration led to mild to moderate cardiac muscle 
cell proliferation. In addition, enforced swimming along with 
nandrolone induced moderate to severe muscle cell prolifera-
tion (Fig. 1). Figure 2 shows microscopic fibrosis scores for the 
study groups. There was thin line of fibrous bonds in heart tissue 
obtained from control group. Microscopic lesion score in heart 
tissue and around coronary vessels was 6 to 7, indicating severe 
structure distortion and large areas of fibrosis in nandrolone and 
NFS groups compared with control group.

Discussion

In the present study, we evaluated effect of nandrolone on 
a large number of cardiovascular risk factors and histological 
changes to the heart in rats. Moreover, we compared deleterious 
effects of nandrolone on heart in both sedentary and resistance 
training conditions. Primary findings of the present study may 
be summarized as follows: administration of nandrolone, with or 
without training, led to increase in Ox-LDL, NADPH oxidase, and 
8-OHdG levels in heart tissue of rats. Lipid profile changes such 
as increase in plasma level of LDL, cholesterol, and Apo B, and 
decrease in HDL were also seen in both experimental groups 
compared with control group. Structural changes, such as se-
vere distortion, diffuse areas of fibrosis, and mild to moderate 
cardiac and coronary muscle cell proliferation were also pre- 
sent in the hearts of rats from nandrolone and NFS groups com-
pared with control group. All biochemical changes were severe 
in NFS group compared with nandrolone-treated group. 

Differential effect of AAS on cardiovascular system in human 
and animal studies has been reported before. Mechanism under-
lying hazardous effect of AAS is not yet fully understood. In the 

current study, levels of LDL, cholesterol, and Apo-B were signifi-
cantly increased in nandrolone and NFS rats compared with lev-
els of control rats. These simple markers are widely accepted as 
risk factor for cardiovascular system disease (20). Based on pre-
vious studies, there is contrary correlation between AAS con-
sumption and lipid profile changes. Johanson et al. (21) reported 
that nandrolone had no marked effect on lipid profile, but as in 
several other studies, our results indicated that nandrolone has 
harmful effect on lipid profile, mainly by increasing LDL and cho-
lesterol levels, as well as decreasing HDL levels (22, 23). As inde-
pendent and well-known risk factors, high level of LDL and a low 

Table 2. Effect of nandrolone and nandrolone+forced swimming on changes to heart tissue oxidized low-density lipoprotein, nicotinamide 
adenine dinucleotide oxidase, 8-hydroxy-2'-deoxyguanosine, homocysteine, and serum paraoxonase

  Control Nandrolone Nandrolone+swim F (2, 15) P

Ox-LDL, ng/L 56.8±1 64.9±1.5* 65.48±1.4* 12.91 0.001

NADPH oxidase, pg/mL 8306±14 9157±22* 11250±21*† 59.49 0.001

8-OHdG, ng/mL 8±0.3 8.88±0.19* 8.89±0.12* 15.9 0.001

Hcy, μmol/L 4.46±0.2 5.7±0.3* 6.7±0.4*† 10 0.002

Paraoxonase, ng/mL 97.5±1.32 96.3±1.8 99±1.4 0.78 0.4
Hcy - homocysteine; NADPH - nicotinamide adenine dinucleotide; Ox-LDL - oxidized low-density lipoprotein; 8-OHdG - 8-hydroxy-2'-deoxyguanosine
Values are mean ±SE for 8 rats per group. *Denotes significant difference (P<0.05) compared to control. †Denotes significant difference (P<0.05) compared to nandrolone group

Figure 1. Immunohistochemical staining of heart tissue and coronary 
vessels by proliferating cell nuclear antigen (PCNA) anti-body showed 
mild to moderate heart muscle cell proliferation (left column), and mod-
erate to severe coronary muscle cell proliferation in nandrolone and 
nandrolone-swim (right column) groups.
(Original magnification×200). PCNA positive indices (➝). C - control, N - nandrolone, NFS - 
nandrolone-swim
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level of HDL induce cardiovascular abnormality through several 
mechanisms involving oxidative stress, endothelial cell dysfunc-
tion, and foam cell formation (24, 25). Interestingly, aside from 
dyslipidemia, in this study, a parallel increase in oxidative stress 
indicators such as Ox-LDL and NADPH oxidase, along with car-
diac and coronary muscle cell proliferation were seen in nandro-
lone and NFS groups compared with control group. It has been 
well established that LDL alone increases risk of heart disease 

threefold (26). Harmful effects of LDL on cardiovascular system 
depend on composition and size (27). Small LDL particles easily 
penetrate arterial wall and undergo oxidation process because of 
its larger compartments (27, 28). In addition, high affinity of LDL for 
arterial wall proteoglycans prolongs LDL residence in subendo-
thelial spaces (29). After being trapped in subendothelial spaces, 
LDL undergoes oxidation reaction and forms Ox-LDL. Ox-LDL af-
fects vascular smooth muscle cell growth, inducing proliferation 
or apoptosis. It stimulates growth via an oxidative mechanism that 
causes release of fibroblast growth factor-2, strengthens mito-
genic effect of angiotensin II, and stimulates mitogen-activated 
protein kinase (MAPK) activation (25). In addition, it has been 
demonstrated in previous studies that Ox-LDL induces expres-
sion of proteins known as cell cycle regulatory proteins (25). Plas-
ma HDL levels, in this study, were also reduced in animals treated 
with nandrolone and subjected to exercise. Reduced plasma HDL 
level has been established as major risk factor of heart disease 
(26, 27). In addition, studies in animal and human models have in-
dicated that high plasma level of HDL is generally related to pro-
tection against atherosclerosis (26, 27). Protective effects of HDL 
against heart disease in general arise from involvement of HDL in 
reverse cholesterol transport (28). Reverse cholesterol transport, 
as a primary pathway, removes excess cholesterol from perip- 
heral cells to selected extracellular acceptors such as HDL and 
apolipoproteins (29). HDL also has a protective effect against LDL 
oxidation, and consequently against heart disease. This valuable 
effect of HDL preventing oxidation of LDL is due to 2-enzyme sys-
tem of paraoxonase and acetylhydrolase associated with normal 
HDL levels (30). Therefore, when HDL level is reduced, protective 
effect of these enzymes against LDL oxidation decreases as well, 
and it makes LDL oxidation and its damaging effect on cardiovas-
cular system more likely. Interestingly, in the current study, des- 
pite decrease in HDL level and increase in Ox-LDL, no significant 
change in paraoxonase level was observed in nandrolone or NFS 
groups, compared with control group. Accordingly, it was possible 
for reduced plasma level of HDL to exert its effect on LDL oxida-
tion through acetylhydrolase or reverse cholesterol transport. We 
also observed that treatment with nandrolone increased concen-
tration of Apo B and Apo B/Apo A ratio without producing signifi-
cant changes in plasma Apo A level. Nandrolone treatment com-
bined with swimming decreased Apo A concentration and 
increased Apo B and Apo B/Apo A ratio simultaneously. Apo A 
and Apo B contain proteins from a spectrum of lipoproteins in-
cluding LDL, very low-density lipoprotein, and DHL. Moreover, 
metabolic fate of Apo A and Apo B is determined by these lipopro-
teins (31). In general, Apo B carries lipids from the liver and gut to 
tissues that use lipids, whereas Apo A-containing particles facili-
tate reverse lipid transport and carry excess lipids from perip- 
heral tissues to the liver (31). In terms of management of cardio-
vascular diseases, there are advantages associated with mea-
suring Apo A and Apo B concentrations (32). Level of concentra-
tion reflects number of particles from respective lipoprotein 
classes and thus the opposite aspect of cardiovascular risk (32). 

Figure 2. Photomicrograph of heart tissue of rats (Masson trichrome 
staining). In (C), sample obtained from the control group; in (N), sample 
obtained from the nandrolone group; in (NFS), sample obtained from the 
nandrolone-swim group
(Original magnification×200). Fibrosis bond (➝)

Tofighi et al.
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High Apo B/Apo A ratio designates a high number of atherogenic 
lipoprotein particles that are likely to be deposited in the arterial 
wall (31). Results of the current study showed a dramatic in-
crease in the Apo B level and Apo B/Apo A ratio, along with coro-
nary and cardiac muscle cell proliferation in nandrolone and NFS 
groups, changes that may favor deposit of lipids in the arteries 
and consequent complications such as proliferation. In this study, 
we observed that with increase in unfavorable lipid profile, level 
of Hcy increased significantly as well. According to the literature, 
few studies have investigated effect of AAS use on Hcy produc-
tion. Consistent with our study, Zmuda et al. (33) reported that AAS 
administration increased serum level of Hcy, but in contrast to our 
results, Graham et al. (34) demonstrated that abuse of AAS de- 
creases plasma Hcy level. A large number of studies have indi-
cated that sulfur-containing amino acid Hcy is an atherogenic 
determinant, and that a strong association exists between Hcy 
level and risk of cardiovascular disease or severity of atheroscle-
rosis (35). The molecular mechanism underlying Hcy-mediated 
cardiovascular system abnormality is not fully understood. A re-
cent study by Sharma et al. (35) indicated that Hcy increased ac-
tivity of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, a 
rate-limiting enzyme in cholesterol biosynthesis. As a risk factor 
in the current study, cholesterol concentration showed parallel 
increase with Hcy. In addition, Hcy increased oxidative degrada-
tion of nitric oxide (NO) through oxidation of its sulfhydryl group, 
as well as level of hydrogen peroxide and superoxide anion (36). 
Reduced NO impaired endothelial vasodilator function, a predic-
tor of vascular morbidity and mortality (37). Moreover, Hcy incu-
bation with vascular smooth muscle cells resulted in significant 
vascular smooth muscle cell proliferation and increase in expres-
sion of proteins such as glycolytic metabolism proteins and cyto-
skeletal proteins like lamin C (38). In the present study, pro-oxidant 
properties of Hcy were confirmed by increased concentration of 
Ox-LDL and NADPH oxides in nandrolone and NFS groups. Sig-
nificant cardiac and coronary smooth muscle cell proliferation 
along with unfavorable lipid profile and increase in oxidative 
stress parameters in the current study may have originated from 
nandrolone-induced increase in Hcy. Another important finding 
of this study was significant increase in NADPH oxidase levels in 
nandrolone and NFS groups compared with levels in control 
group. Although NADPH oxidase proteins were first described 
through their important role in function of phagocytic cells (39), 
recently, a growing body of evidence has indicated that these 
proteins play a crucial role in cardiovascular system abnormality 
through redox signaling mediators such as endothelial activation, 
angiogenesis, atherosclerosis, cardiac hypertrophy, and vascular 
and cardiac remodeling (40). Many studies have revealed that re-
active oxygen species (ROS) derived from NADPH oxidase are 
involved in surface expression of intercellular and vascular ad-
hesion molecules on endothelial cells, tumor necrosis factor-al-
pha, renin-angiotensin system, and hypercholesterolemia (41). 
NADPH oxidase-derived ROS has been shown to act through 
activation of MAPK or nuclear factor-kappa B (41). This specific 

signaling pathway dependent on NADPH oxidase-derived ROS 
has a central role in development of chronic pressure overload 
cardiac hypertrophy (42).

In the current study, unfavorable lipid profile and enhanced 
Hcy and NADPH oxidase levels were observed, along with car-
diac tissue fibrosis and cardiac muscle cell proliferation. The 
mechanism through which nandrolone induces cell proliferation 
and fibrosis is not fully understood, but it may be result of oxida-
tive stress and inflammatory reactions. A recent study investigat-
ing effect of intramuscular administration of nandrolone deca- 
noate on rabbits found that it caused fibrosis in heart tissue and 
was mediated by oxidative stress (43). In addition, accumulating 
evidence suggests that ROS resulting from oxidative stress and 
inflammatory cytokines play key role in heart tissue prolifera-
tion and fibrosis (44). Based on results of the current study and 
previous reports, we suggest that nandrolone induces oxidative 
stress, and that inflammatory cytokines may trigger fibrotic and 
proliferative signaling pathways and contribute to proliferation 
and fibrosis of the heart and cardiomyopathy. 

Another important finding of current study was the signifi-
cant increase in LV weight/body weight ratio (as an indicator of 
heart hypertrophy) in nandrolone and NFS groups. To our knowl-
edge, this is the first in vivo study to show that nandrolone expo-
sure with or without exercise increased NADPH oxidase level 
along with cardiac hypertrophy in rats. In the present study, ad-
ministration of nandrolone caused DNA damage to heart tissue, 
indicated by an increased 8-OHdG level in heart tissue. Similarly, 
Ahmed et al. (42) reported enhanced testicular DNA damage fol-
lowing administration of nandrolone to rats based on results of 
comet assay. One of the predominant forms of free radical-in-
duced lesion to DNA is 8-OHdG. It is result of oxidation, hydroxyl 
group radical is added to eighth position of guanine molecule 
(45). Oxidative stress observed in the current study, indicated by 
increased Ox-LDL and NADPH oxidase levels on the one hand, 
and oxidative DNA damage along with tissue fibrosis and cell 
proliferation on the other hand, led us to speculate that nandro-
lone exerts its hazardous effects on heart tissue through oxida-
tive stress. 

Finally, study results showed all biochemical changes were 
severe in the NFS group compared with nandrolone-treated 
group. Previous studies have shown that physical training alone 
has various effects (increased, decreased, or no change) on 
oxidative stress damage markers (46–48). As in present study, 
previous reports have indicated that combination of nandrolone 
plus exercise led to change in myocardial enzymes and increase 
in renin-angiotensin system activity, a plausible mechanism of 
heart hypertrophy (49, 50). Conversely, another study indicated 
that endurance exercises can improve redox system balance 
through enhancing activity of some antioxidant enzymes such 
as SOD and catalse (51). Further research is required in compre-
hensive detail to determine whether exercise training alongside 
nandrolone consumption augments or reduces cardiotoxic ef-
fects of nandrolone.
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Study limitations

Our study had a few limitations. First, as a molecular underly-
ing for heart failure, activation of fetal gene expressions, inclu- 
ding myosin heavy chain isoforms, was not analyzed in the cur-
rent study. We did not study alterations of calcium ion homeosta-
sis or norepinephrine, important hallmarks of molecular altera-
tion in heart failure. Another limitation was not assessing acute 
phase inflammatory protein changes such as alpha and beta 
globulins in plasma of the animals after treatment.

Conclusion

In conclusion, we found that 6 weeks of nandrolone treat-
ment with or without accompanying physical training increased 
oxidative stress damage markers, unfavorable lipid profile, car-
diac hypertrophy, fibrosis, and cardiac and coronary vessel pro-
liferation in rats. Our results offer a new perspective on nandro-
lone-induced cardiac damage. That is, large number of heart risk 
factors and oxidative stress should be considered as underlying 
factors. However, all these factors contributed to development 
of nandrolone-induced adverse effect on cardiac and coronary 
tissue and will keep the field of nandrolone heart research busy 
for a very long time. Further studies are necessary to confirm the 
role of increased oxidative stress damage markers with sudden 
cardiac death induced by AAS.
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