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ABSTRACT

Background: To evaluate the application value of artificial intelligence-based auxiliary 
diagnosis for congenital heart disease.

Methods: From May 2017 to December 2019, 1892 cases of congenital heart disease 
heart sounds were collected for learning- and memory-assisted diagnosis. The diagnosis 
rate and classification recognition were verified in 326 congenital heart disease cases. 
Auscultation and artificial intelligence-assisted diagnosis were used in 518 258 congeni-
tal heart disease screenings, and the detection accuracies of congenital heart disease 
and pulmonary hypertension were compared.

Results: Female sex and age > 14 years were predominant in atrial septal defect (P < .001) 
compared with ventricular septal defect/patent ductus arteriosus cases. Family history 
was more prominent in patent ductus arteriosus patients (P < .001). Compared with no 
pulmonary arterial hypertension, a male predominance was seen in cases of congeni-
tal heart disease–pulmonary arterial hypertension (P < .001), and age was significantly 
associated with pulmonary arterial hypertension (P = .008). A high prevalence of extra-
cardiac anomalies was found in the pulmonary arterial hypertension group. A total of 
326 patients were examined by artificial intelligence. The detection rate of atrial septal 
defect was 73.8%, which was different from that of auscultation (P = .008). The detection 
rate of ventricular septal defect was 78.8, and the detection rate of patent ductus arte-
riosus was 88.9%. A total of 518 258 people from 82 towns and 1220 schools were screened 
including 15 453 suspected and 3930 (7.58%) confirmed cases. The detection accuracy of 
artificial intelligence in ventricular septal defect (P = .007) and patent ductus arteriosus 
(P = .021) classification was higher than that of auscultation. For normal cases, the recur-
rent neural network had a high accuracy of 97.77% in congenital heart disease–pulmo-
nary arterial hypertension diagnosis (P = .032).

Conclusion: Artificial intelligence-based diagnosis is an effective assistance method for 
congenital heart disease screening.

Keywords: Artificial intelligence, congenital heart disease, heart sound

INTRODUCTION

Congenital heart disease (CHD) is typically defined as a structural abnormality 
of the heart and/or great vessels that is present at birth. Although approximately 
20% of CHD incidence can be attributed to genetic syndromes, teratogen expo-
sure, or maternal diabetes, there remains substantial uncertainty regarding the 
risk factors for the remaining 80% of cases.1

The mean prevalence of CHD globally from 1970 to 2017 was 8.224% (7.817%, 
8.641%).2

According to birth defect statistics, the incidence rate of CHD is 4%-50%,3 
accounting for about 30% of birth defects. With increases in the birth rate and 
population, the prevalence of CHD may increase by 9%-10%.4 Twenty percent 
of children with CHD will progress to severe pulmonary hypertension and heart 
failure due to a lack of timely treatment, with high rates of death and disability, 
resulting in serious social and economic burdens.5
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The prevalence of CHD at birth around the world has not been 
accurately established. Notably, the incidence rate varies, 
with values of 8.1%, 6.4%, 6.5% 10.3%, and 10.1% for America 
(1998-2005), Britain (1985-2004), Europe 22, Denmark (1977-
2005), and Taiwan, respectively.6,7 China lacks registration 
research. The incidence of birth defects in China in 2012 was 
8.51%,8,9 which is significantly lower than the rates in Europe 
and America. Moreover, information about undiagnosed 
CHD is difficult to obtain, especially in developing coun-
tries.10 The variations in prevalence are primarily related to 
the age at diagnosis, the definition of CHD, and the screen-
ing modalities used. The most commonly used screening 
technology is artificial ultrasound diagnosis after ausculta-
tion. However, extensive training and experience are needed 
for physicians that practice auscultation.11 It was reported 
that on average, just 20% of relatively inexperienced medi-
cal interns can effectively use the auscultation method to 
measure heart conditions.12 Therefore, the detection rate of 
CHD can be greatly affected by variations in deficiencies, 
selection criteria, diagnostic methods, and the skills of physi-
cians at different participating hospitals. Among the studies 
reporting the method of diagnosis, 95.8% utilized echocar-
diography, and echocardiography was not available at most 
facilities.

Heart sounds recorded via phonocardiogram (PCG) have 
been widely used in medical practice for the straightfor-
ward, efficient, and cost-effective screening of a number 
of cardiovascular diseases (CVD). However, the limitations 
highlighted in the existing studies are as follows. First, most 
of the previous studies ignored subject independence, which 
might lead to overly optimistic results. Second, only elec-
tronic stethoscope is currently used for the digital acquisition 
of heart sounds, and no corresponding analysis or auxiliary 
diagnosis method is available. To overcome the aforemen-
tioned challenges, we build a standard heart sound data-
base with consistent data collection equipment, rigid ground 
truth assessment, and a reasonable data partitioning prin-
ciple. We call this database the CHD Heart Sounds Yunnan 
(CHD-HSY) corpus. Table 1 shows the known publicly acces-
sible heart sound databases. In the past 2 decades, building 
intelligent machines to monitor the status of the heart via 
the information extracted from PCG has become increas-
ingly popular with developments in audio signal processing 

and machine learning.13 In the era of artificial intelligence 
(AI) and the Internet of Things, developing an intelligent 
machine listening-based system can be beneficial for car-
diology physicians and ultimately patients suffering from 
CHD by improving the general understanding of the current 
health status of the patients. It is encouraging to see that a 
variety of approaches published in the literature can be used 
to automatically diagnose CVD via machine learning and 
signal processing techniques. In this article, the application 
prospects of AI-assisted diagnosis methods for use in screen-
ing are discussed.

METHODS

Database
This study was a cross-sectional observational assessment. 
Cardiac sounds were selected from the CHD-HSY data-
base, and the data were collected between May 2017 and 
December 2019 from Fuwai Yunnan Cardiovascular Hospital. 
More than 79 hours of recordings containing 283 800 heart 
sounds from 1892 (female: 1035, male: 857) subjects were 
obtained. The ages of the participants ranged from 1 to 72 
years (10.54 ± 9.95 years).

This study was approved by the Ethics Committee of 
Fuwai Yunnan Cardiovascular Hospital (approval number: 
CHSRE2021008), and written informed consent was waived 
for this study given its retrospective design.

Three types of CHD cases were included: (1) atrial septal 
defect (ASD), (2) ventricular septal defect (VSD), and (3) pat-
ent ductal arteriosus (PDA). These 3 types are the 3 most 
frequent types of CHD, and these mild lesions contribute to 
57.9%-65.3% of CHD cases worldwide 3. The following con-
ditions were not included in the scope of CHD: (1) PDA that 
closed spontaneously within 3 months; (2) ASD <5 mm in 
diameter; (3) simple patent foramen ovale; (4) severe car-
diovascular emergencies, such as myocardial infarction, 
aortic dissection, acute pulmonary embolism, etc.; (5) arti-
ficial heart valves have been implanted; (6) severe arrhyth-
mia, ventricular rate greater than 80 beats/min; (6) severe 
primary valve disease and left ventricular outflow tract 
obstruction; and (7) patients with severe pulmonary hyper-
tension. Echocardiography was used as the diagnostic cri-
terion for CHD. When comparing the 2 methods in CHD 
screening, both suspected cases of artificial auscultation 
and suspected cases of AI are confirmed by echocardiogra-
phy. During the development of AI, the cases of deep learn-
ing and testing are all normal or abnormal cases that have 
been confirmed by echocardiography.

The cardiac diagnoses were arranged in accordance 
with the nomenclature of the International Pediatric and 
Congenital Cardiac Code of the Nomenclature Working 
Group.13

Methods
In this section, we first introduce the data collection meth-
ods. Then, the acoustic features and machine learning mod-
els used for the benchmark work are defined. Finally, we 
present the evaluation metrics adopted in this study.

HIGHLIGHTS
• The most commonly used congenital heart disease 

(CHD) screening technology is cardiac auscultation, but 
the results depend on the physicians’ skills.

• After combining phonocardiogram and electrocardio-
gram signals and filtering basic heart sounds, this study 
developed an artificial intelligence (AI)-based CHD 
diagnosis tool via a recurrent neural network with 3 
layers.

• After screening 518 258 people, the AI detection accu-
racy of the ventricular septal defect (P = .007) and pat-
ent ductus arteriosus (P = .021) classification was higher 
than that of auscultation.
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Heart Sound Collecting Methods
Heart sound audio recordings were collected with an elec-
tronic stethoscope (Thinklabs One, 6500 S. Quebec Street, 
Suite 210, 80111 Centennial, US) with Bluetooth 4.0 at a 2 kHz 
sampling rate. The data were acquired from 5 locations on 
the body (cf. Figure 1) for 30 seconds on average (ranging from 
58.6 seconds to 63.2 seconds) with the body in a supine posi-
tion. In total, 9460 recordings over 79 hours were obtained 
from the 1892 subjects. The database included 3 categories 
of heart sounds to be classified: ASD, VSD, and PDA.

The system uses an STM32 lower computer, controls ad7606 
to collect heart sounds and electrocardiogram (ECG) signals 
in parallel, and transmits the collected data to the upper 
computer through a W5100 network chip. The upper com-
puter with an APSoC ZedBoard platform is divided into a 
Programmable Logic (PL) and a Processing System (PS). The 
overall design architecture of the system is shown in Figure 2.

There are 2 main research directions considered in this 
study: segmentation and classification. The segmentation 
of heart sounds separates PCG signals into their fundamen-
tal components, e.g., the first (S1) and the second (S2) heart 
sounds (Figure 3). S1 is caused by the closure of the mitral 
and tricuspid valves, and S2 is caused by the closure of the 
aortic and pulmonary valves. S1 and S2 are normal sounds. 
Nevertheless, the third and fourth heart sounds, namely S3 
and S4, murmurs, and ejection clicks are usually associated 
with a disease or anomaly.14

Analysis of Heart Sounds Based on Artificial Intelligence
This study combines PCG and ECG signals to analyze the 
PCG results, and ECG signals are used to locate the R wave 
and the T wave for each heartbeat (Figure 3).15

Heart Sound Denoising
Heart sounds obtained using diagnostic tools are usually 
contaminated with noise from various sources. These sounds 
hinder the early detection of mild heart sounds in PCGs. 
Therefore, filtering noise to remove such artifacts becomes 
essential but should be done at the cost of preserving all diag-
nostic information required for PCG analysis while removing 
all unwanted noise. A sixth-order Chebyshev low-pass filter 
with a cutoff frequency of 140 Hz is used for this purpose. 
The noises are at high frequencies, while the diagnostic 
information is at low frequencies. Filtering removes the high-
frequency noise. The filtered heart sound is then input into 
the second phase of analysis, namely segmentation.

Multiscale wavelet denoising decomposes the signal into 
multiple frequency scales by using a wavelet transform and 
processes each frequency scale separately. Wavelet trans-
form is most suitable for nonstationary signals. Therefore, 
for nonstationary signals such as heart sound signals, the 
appropriate wavelet bases should be selected for multiscale 
decomposition, each scale should be separately filtered, and 
the filtered coefficients must be reconstructed. This process 
can filter noise and retain basic heart sound information.16 
Common wavelet bases include the db wavelet, coif wave-
let, and sym wavelet. Figure 4 shows 3 wavelet bases: db6, 
coif 5, and sym5.

According to the morphological characteristics of heart 
sounds, the db6 wavelet is selected to filter heart sounds. 
However, with different levels of wavelet decomposition, 
the frequency distribution of each scale will vary, and the 
number of calculations will also differ. Therefore, selecting 
the appropriate level of wavelet decomposition is conducive 
to rapid analysis and calculation. The sampling rate of the 

Table 1. Current Sound Databases

Year Number of Instances Heart Sound Categories

PASCAL 2011 823 Normal, murmurs, extra heart sounds, and artifacts

PhysioNet 2016 3240 Normal, abnormal, and uncertain

HSS 2018 845 Normal, mild, and moderate/severe

CHD-HSY 2019 1892 ASD (770), VSD (458), PDA (664), and AI-assisted diagnosis
AI, artificial intelligence; ASD, atrial septal defect; CHD-HSY, Congenital Heart Disease–Heart Sounds Yunnan; HSS, the Heart Sounds 
Shenzhen;PAS, PASCAL Heart Sound  Challenge Datase; PDA, patent ductal arteriosus; physioNet, PhysioNet CinC Challenge Dataset; 
VSD,  ventricular septal defect.

Figure 1. We collected heart sounds from 5 locations on each subject’s body: auscultatory mitral (M), aortic valve auscultation 
(A), pulmonary valve auscultation (P), auscultatory areas of the tricuspid valve (T), and second aortic valve auscultation (E).
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heart sound acquisition box used in the subject design was 
5000 Hz. According to the Nyquist sampling theorem, the 
maximum frequency of a heart sound signal is 2500 Hz. The 
heart sound signal after wavelet denoising is not involved 
in subsequent feature extraction and is only used in tasks 
involving the S1 location. Therefore, the denoising process 
retains the fundamental heart sounds to the greatest extent 
possible and filters out other sounds. Thus, a heart sound 
signal is decomposed into 6 layers, considering the filtering 
effect and calculation speed. Figure 5 shows the schematic 
diagram of the 6-layer decomposition.

In Figure 5, cAi (i = 1, 2, 3, …, 6) is the approximate coefficient 
of layer i, and cDi (i = 1, 2, 3, …, 6) is the detail coefficient of 
layer i. The frequency distribution of heart sounds is 5-6,00 
Hz, and the main frequency components S1 and S2 are in the 
range of 20-1150 Hz. To effectively retain the basic heart 
sounds and filter other sounds, the coefficients of cA6, cD6, 
cD5, and cD4 are threshold filtered in multiscale filtering, 
and the remaining cD1-cD3 are replaced with zeroes. The 

threshold filtering algorithm uses soft threshold filtering. 
After the above wavelet coefficients are processed, they are 
reconstructed in turn according to the decomposition order 
to obtain the filtered heart sound. To compare the filtering 
effects of different decomposition levels on heart sounds, 
the db6 wavelet base is selected to compare the filtering 
effects of 4, 5, and 6 decomposition layers. The comparison 
results are shown in Figure 6.

From the experimental results, multiscale wavelet decom-
position can remove the systolic and diastolic interference 
information, and the soft threshold filtering algorithm can 
retain the basic heart sounds without changing their ampli-
tude and shape. Additionally, according to the 3 filtering 
effects (B), (C), and (D) in Figure 8, the deeper the number of 
decomposition layers, the better the filtering of interference 
information. Therefore, the experimental scheme of 6-layer 
wavelet decomposition and filtering based on the db6 wave-
let are comprehensively determined through experimental 
analysis.

Figure 2. The overall design of the system.



Anatol J Cardiol 2023; 27(4): 205-216  Yang et al. Research on Diagnostic Technology of Congenital Heart Disease

209

Segmentation of Heart Sounds
In the heart sound localization and segmentation stage, 
the envelope extraction of basic heart sounds is still the 
focus, and the integrity of basic envelope extraction directly 
affects the accuracy of later localization and segmentation. 
The extraction steps of the Shannon energy envelope with a 
given time scale are as follows:

1) The Shannon energy of signal Xnorm is extracted through 
Eq. (1):

Es = −Xnorm
nlog(Xnorm

n) (1)

where n is the order of Shannon energy and Es is the Shannon 
energy of Xnorm.

2) Determine the time scale LT. The value of LT is related to 
the duration of S1 and S2. According to the above calcula-
tion, the duration of S1 and S2 is 40-160 milliseconds; there-
fore, the value of LT can be determined according to Eq. (2):

LT = Ts ∙ Fs/2 (2)

where Ts is 0.08 seconds or half of the longest duration of S1 
and S2.

3) The mean sequence Es(t) of Shannon energy Es is obtained 
according to Eq. (3):

E t Es

K t L

t L

s

T

T
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�
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�L
k

T

1
2 1

 (3)

where Es(t) is the mean sequence of Shannon energy Es.

4) To eliminate the influence of signal differences, the maxi-
mum value of Es(t) is normalized and mapped to the [−1, 1] 
interval. Finally, the Shannon energy envelope ELs with a 
time scale are obtained.

Figure 7 shows the effect of extracting envelopes from the 
same heart sound signal by introducing the Shannon energy 

Figure 3. Heart sounds collected with the system. S1, the first heart sound; S2, the second heart sound.

Figure 4. Comparison of 3 different wavelet bases.

Figure 5. Schematic diagram of the 6-layer wavelet decomposition.
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of the time scale and the normalized Shannon energy, which 
highlights the problem of time deviation; notably, this issue 
is solved by introducing the Shannon energy envelope of the 
time scale. Moreover, this method increases the smoothness 
of the envelope, and the feature retention degree of the 
basic heart sound envelope is basically the same as that of 
the normalized Shannon energy envelope.

After envelope extraction and heart sound localization, it is 
necessary to segment the original heart sound by using the 
located S1 position. However, due to the complexity of heart 
sounds, there is no algorithm to ensure that the success rate 
of heart sound localization is 100%; therefore, it is necessary 
to formulate different segmentation strategies for different 
localization situations. Additionally, to increase the temporal 
relevance of adjacent samples after heart sound segmenta-
tion, this article uses periodic steps or fixed steps for seg-
mentation in time. According to the different algorithm 
results, 3 different segmentation strategies are formulated. 
Table 2 gives the corresponding segmentation methods.

A heart sound signal is a type of 1-dimensional (1D) data, and 
a convolutional sample (image) is an arrangement of a series 
of pixel values on the x-axis and y-axis. In particular, the red-
green-blue values of a color image can be regarded as three 
2D gray images; thus, a convolutional neural network (CNN) 
must organize the input samples into 2D data when perform-
ing pattern recognition. During sample training and recog-
nition, the CNN applies a window to the input image, learns 
characteristic parameters in the window, and shares all con-
nection weights. Therefore, the transformation from 1D to 
2D can be realized by extracting the characteristic param-
eters of heart sound signals and organizing them appropri-
ately to meet the needs of CNN recognition. In view of some 
new features provided by CNNs, this article uses log Mel-
frequency spectral coefficients (MFSCs)14 instead of Mel-
frequency cepstral coefficients to extract heart sound signal 
features and organizes MFSCs into a feature map, which is 

Figure  6. Comparison of multilayer wavelet denoising 
effects: (A) original heart sound signal, (B) 5-layer 
decomposition, and (C) 6-layer decomposition.

Figure 7. Comparison of two envelope extraction effects.
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used as the input of the CNN in a later stage. The features 
extracted based on MFSCs are highly correlated with the 
original heart sound signal, which is smoothed in the fre-
quency spectrum. A few MFSC features can represent most 
of the information in the signal.

The basic steps of MFSC processing are as follows:

1. Preprocessing. Pass the signal x(n) through a high-pass 
filter to compensate for the high-frequency part of 
the signal and highlight the resonance peak at the high 
frequency.

2. Framing and windowing. Heart sound signals are short-
term nonstationary signals that are difficult to study. 
Framing can make the signal approximate to a stationary 
signal. Windowing can prevent the signal from changing 
too much between 2 adjacent frames, so that there are 
overlapping parts between these frames, thus overcom-
ing the phenomenon of spectrum leakage. When fram-
ing, the signal overlap is generally set to 50% to enhance 
the time resolution. The number of frames m in a heart 
sound signal after framing is calculated as shown in 
Eq. (4):

M
t f F

F
s l

m

�
� �

� 1  (4)

In Eq. (4), t is the temporal length of the intercepted heart 
sound signal, Fl is the frame length, Fm is the frame shift, and 
fs is the sampling frequency.

3. Frequency domain transformation. A change in the 
signal in the time domain is a good representation of 
the energy characteristics of the signal and is usually 
converted into an energy distribution in the frequency 
domain for observation. Different energy distributions 
represent the characteristics of different heart sound 
signals. In this article, Fourier transform is used, and the 
corresponding expression is shown in Eq. (5):

X k x n n k N
n

N n
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�
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��

0

1 2

0 1e
j kÀ

, ,  (5)

where X(k) represents the frequency domain signal and N is 
the number of points included in the frame length.

4. Mel scale conversion. The Fourier-transformed signal 
still needs to be converted by the Mel filter bank and 
Mel scale. Notably, the frequency domain signal has 
many redundancies. The Mel filter bank can simplify the 
amplitude in the frequency domain, and each frequency 
band is represented by a value. One filter produces a fre-
quency band value, and the Mel scale is consistent with 
the auditory characteristics of human ears. Generally, 
the samples identified by a CNN are required to be square 
graphs, so the relationship between the number of filters 
N and the number of frames M should satisfy Eq. (6):

M≈N (6)

In Eq. (6), the value of M is generally between 24 and 80; 
therefore, the length of data interception can be roughly 
determined by Eqs (4) and (6).

5. Take the logarithm of the energy value. The human per-
ception of sound is nonlinear, and a logarithmic nonlin-
ear relationship can best describe the characteristics of 
sound perception by the human ear.

6. Determine the difference. Because a heart sound signal 
is continuous in the time domain, the feature information 
extracted from frames only reflects the characteristics 
of the heart sound signal in the selected frames. To make 
the features continuous in the time domain, the dimen-
sion information from the previous and next frames is 
added to the feature dimension, usually through a first-
order difference (∆) and second-order difference (∆-∆) 
scheme.

Feature Extraction and Classification of Heart Sounds
In the past few years, deep learning17 has dominated the 
machine learning community, achieving high performance 

Figure 8. Adam optimizer results.

Table 2. Heart Sound Segmentation Strategy

Strategy No. Judgment Mode Division Strategy

1 S1 is greater than 1/2 of the length of the heart sound Segmentation according to the S1 
position

2 S1 is less than 1/2 of the length of the heart sound. p2p is less than 2 
seconds

Starting from 0; the step value is p2p

3 S1 is less than 1/2 of the length of the heart sound. In addition, p2p is 
greater than 2 seconds

Split from 0; the step value is 1 s

p2p, the initial cardiac cycle length; S1, the first heart sound; S2, the second heart sound.
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in many fields, including speech recognition,18 image recog-
nition,19 and object detection.20 This approach has displayed 
many advantages, particularly for speech in the health 
domain.21 In this study, we investigate a recurrent neural 
network (RNN)22 and its performance in recognizing heart 
sounds. Unlike the normal feed-forward neural network, an 
RNN can learn contextual information from sequential inputs 
and consider the inherent time dependencies in heartbeat 
signals. In the RNN model, we use a 3-layer structure. We 
train the model for 1566 epochs on the training set and assess 
the performance of the model based on the development set 
at each epoch. Then, the best result is chosen and applied to 
the model used for the test set.

Network training refers to inputting a certain number of 
samples into the network and constantly optimizing the net-
work weights through algorithm adjustment so that the out-
put of the network is consistent with the expected values. 
Training a neural network mainly includes the adjustment of 
the network architecture, the selection of activation func-
tions for each layer, and the selection of a model compilation 
optimizer. The objective is to reduce the loss value of training 
samples, improve the training accuracy, enhance the accu-
racy achieved for the verification set, and prevent overfit-
ting. Before training, the training data are first divided, and 
1000 training samples are randomly split according to a ratio 
of 70 : 30; that is, 700 samples are used for training, and 300 
samples are used for supervised learning in each iteration. 
The result is verified by cross-validation. In training, the block 
size is 32, and the CNN model must learn 2 600 065 param-
eters. A logarithmic loss function is used in the supervised 
model, and the early stopping function provided in Keras is 
used to find the best model and prevent overfitting, consid-
ering the influence of different optimizer functions on the 
accuracy. The Adam optimizer was selected (Figure 8); the 
loss value was 0.25, and the accuracy rate was 0.896 after 31 
rounds of model training.

In this article, a test set with 200 samples from the heart 
sound signal collection sample bank is used for comparative 
testing, and there are 100 positive samples and 100 negative 
samples in the test set. Classification algorithms often use 
sensitivity (denoted as se), specificity (denoted as sp), and 
accuracy (denoted as acc) as evaluation indexes. An abnor-
mal heart sound signal that is correctly classified is called 
a true positive (TP), an abnormal heart sound signal that is 
incorrectly classified is called a false positive (FP), a correctly 
classified normal heart sound signal is a true negative (TN), 
and a normal heart sound signal that is classified as abnor-
mal is called a false negative (FN). Specifically, se, sp, and acc 
are calculated as shown in Eqs (7)-(9):

se
TP

TP FN
�

�
 (7)

sp
TN

TN FP
�

�
 (8)

acc
TP TN

TP FN TN FP
�

�
� � �

 (9)

According to the prediction results of the model and the 
results of Eqs (7)-(9), se = 0.91, sp = 0.88, and acc = 0.895.

Comparison of Artificial Diagnosis and Artificial 
Intelligence Results
For 326 cases of CHD, the detection rate was classified and 
compared; in the screening of CHD, 518 258 children were 
divided into 2 groups, one group (n = 421 560) was assessed 
with artificial auscultation, and the other group was assessed 
with AI (n = 96 698) to assist with the diagnosis. Then, heart 
ultrasound information was used to verify and compare the 
accuracy of the diagnosis. To avoid missed diagnoses with AI, 
all children underwent artificial auscultation twice to com-
pare the diagnostic rates of echocardiography and AI for 
pulmonary hypertension in patients with CHD.

Statistical Methods
For statistical description, all continuous variables were 
described as mean  ±  standard deviation, or medians and 
percentiles (25th percentile and 75th percentile) for non- 
normally distributed data. Categorical data were tested 
using the Pearson chi-square or Fisher’s exact test. Statistical 
software (Stata, version 14; StataCorp, College Station, TX, 
USA) was used to perform all statistical analyses. A P-value 
< .05 was considered significant.

RESULTS

Data
A total of 1892 cases could be assessed with AI deep learn-
ing (54.8% males). The mean weight of individuals was 30.98 
± 15.96 kg, and the median age was 10.54 ± 9.95 years. In this 
study, early CHD students in primary and secondary schools 
were the target population for screening. Therefore, the 
heart sounds learned by AI mainly come from people aged 
less than 20 years, and the later verification population of 
AI is mainly hospital-confirmed patients. At the same time, 
in view of the fact that the incidence and treatment of CHD 
are mainly at low ages, the number of patients older than 20 
years is relatively small (only 6.03%). In addition, in our analy-
sis, there was no significant difference in the diagnosis rate 
of AI by age group. Finally, when we collect heart sounds, we 
keep the environment quiet, and the high sensitivity collec-
tor and AI algorithm can remove some heart sound noises, 
so even in the population with mixed factors, such as obese 
patients, we can also collect effective heart sound features 
for diagnosis and screening analysis.

Table 3 shows a female predominance in ASD (P < .001). The 
proportion of children (age > 14 years) was substantially 
higher in the ASD group than in the VSD/PDA group. Family 
history was appreciably predominant in the patients with 
PDA (P < .001). Compared with that for no pulmonary arte-
rial hypertension (PAH), male predominance was observed in 
cases of CHD-PAH (P < .001), and age was significantly asso-
ciated with PAH (P = .008). A comparatively higher preva-
lence of extracardiac anomalies was found in the PAH group. 
In total, 8 CHD-PAH patients (2.14%) had a family history. 
There was no significant difference between the training 
and test results in the general case.
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From January to December 2019, 518 258 people were 
screened using the study protocol; 5 prefectures (Fuyuan 
County, Xuanwei City, Baoshan City, Diqing state, and 
Wenshan state) in Yunnan and 5 provinces (Battambang, 
Siem Reap, Kampong Tong, Kampong Cham, and 
Tebenkmon) in Cambodia were included in the screening. A 
total of 518 258 people from 82 towns and 1220 schools were 
screened, and these individuals included 15 453 suspected 
and 3 930 (7.58%) confirmed cases. These cases included 
2304 (58.62%) with a single defect. Table 4 shows that the 
most common subtype of CHD was VSD (31.5%), followed 
by ASD (17.25%), PDA (79.87%), PS (4.22%), and tetralogy of 
Fallot (4.7%).

There was no significant difference between the preva-
lences estimated in different regions and different nations 
(Table 4). When the analysis was restricted to ASD only, the 
prevalence in Yunnan was significantly higher than that in 
Cambodia.

Comparison of Discovery Rates
Among the 326 confirmed CHD patients, including ASD (126), 
VSD (137), and PDA (63) patients, the detection rate of AI 
diagnosis was ASD (78.6%), VSD (81.02%), and PDA (81%), as 
shown in Table 5. Table 6 shows that only 68 patients were 
correctly diagnosed with ASD diagnosis, and there was a sig-
nificant difference between the 2 diagnosis types (P = .008). 
In the validation of patients with confirmed CHD, we statis-
tically analyzed and compared the correct diagnostic rate 

of AI based on the age of 14 years and found that there was 
no significant difference in the diagnostic accuracy of ASD, 
VSD, and PDA (Table 7).

Accuracy Comparison
Among the 518 258 people screened, 13 126 and 3120 sus-
pected cases were obtained in the artificial auscultation 
group and the AI group, respectively. Table 8 shows that the 
detection accuracy of AI in VSD and PDA classification was 
higher than that of artificial auscultation, and the difference 
was statistically significant. Additionally, the overall accu-
racy of AI screening was higher than that of auscultation 
screening.

Application of Artificial Intelligence-Assisted Diagnosis in 
Congenital Heart Disease–Pulmonary Arterial 
Hypertension
Congenital heart disease–pulmonary arterial hypertension 
heart sounds are significantly different from normal heart 
sounds and can be distinguished and classified by pattern 
recognition and AI technology. For normal cases, the RNN 
(P = .032) exhibited a high accuracy of 97.77% in CHD-PAH 
diagnosis (Table 9).

DISCUSSION

The system uses the APSoC-ZedBoard platform as the core 
and combines it with STM32 at the PL end to realize the real-
time parallel acquisition of heart sounds and ECG signals. A 
customized embedded operating system, Linaro, is built on 

Table 3. Number of Instances in Each Data Set of the CHD-HSY Corpus

CHD (n = 1892)

ASD (n = 770) VSD (n = 664) PDA (n = 458) Train/Test (1566/326)
CHD-PAH 

(n = 373)

Males/females, n (%) 250 (32.49)1,2 307 (46.27) 221 (48.37) 678 (43.29)/146 (44.78) 217 (58.17)*

Age > 14 years, n (%) 525 (68.18)1,2 332 (50%) 262 (57.2) 442 (28.22)/96 (29.44) 226 (60.58)*

Extracardiac anomalies, n 
(%)

48 (6.23) 46 (6.92) 62 (13.53) 76 (4.98)/15 (4.6) 66 (17.69)*

Family history, n (%) 17 (2.2)2 28 (4.21)2 46 (10.04) 12 (7.66)/9 (2.76) 8 (2.14)
1P < .05 compared with VSD; 2P < .05 compared with PDA; 3P < .05 compared with the T test; *P < .05 compared with No-PAH.
ASD, atrial septal defect; CHD-HSY, Congenital Heart Disease Heart Sounds Yunnan; PAH, pulmonary arterial hypertension; PDA, patent ductal 
arteriosus; VSD, ventricular septal defect.

Table 4. Prevalence and Percentages of CHD Screening

CHD Subtype Prevalence of CHD Subtype Per Thousand, n (%) Percentage of CHD Subtype, %

Ventricular septal defect 1238 (2.39) 31.5

Atrial septal defect 678 (1.31) 17.25

Patent ductus arteriosus 388 (0.75) 9.87
CHD, congenital heart disease.

Table 5. Detection Rate

Auscultation, n (%) AI, n (%)

ASD (n = 126) 99 (78.6) 93 (73.8)

VSD (n = 137) 111 (81.02) 108 (78.8)

PDA (n = 63) 51 (81) 56 (88.9)
AI, artificial intelligence; ASD, atrial septal defect; PDA, patent ductal 
arteriosus; VSD, ventricular septal defect.

Table 6. Number of ASD Cases Detected

Auscultation Correct Incorrect P

AI

Correct 68 31 (31.3) .008

Incorrect 25 2

All 93 33
AI, artificial intelligence; ASD, atrial septal defect.
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the PS, and it runs the acquisition program compiled by Qt, 
creates waveforms, and stores ECG signal data in real-time. 
The system is portable and stable, and it provides antijam-
ming and visualization capabilities, making it convenient 
for professionals to apply in the diagnosis of pathological 
information for patients with CHD. The system combines the 
acquisition part of the lower computer, the data process-
ing part of the upper computer, and the display part and the 
power supply part in a polyethylene plastic box at a low cost. 
In this article, a heart sound signal classification algorithm 
based on a CNN is proposed. First, a 1D heart sound signal 
with considerable background noise is converted into a clean 
2D sample map by using the preprocessing algorithm pro-
posed in this article to meet the needs of the CNN classifier. 
These feature maps are used as CNN inputs to optimize and 
train the network architecture. Experiments show that the 
Adam optimizer provides high accuracy in the 5-layer CNN 
model, and the training results include a model training accu-
racy of 0.896 and a loss of 0.25. The algorithm yields se = 0.91, 
sp = 0.88, and acc = 0.895 for the test dataset. The accuracy 
achieved in this article is competitive with that of other algo-
rithms. The model is optimized under the condition of large 
samples, and its universality and robustness are guaranteed. 
Compared with the methods used by traditional algorithms, 
the developed preprocessing method is relatively simple. 
The algorithm in this article can provide an excellent choice 

for future applications involving machine-assisted ausculta-
tion and telemedicine. In the future, we will focus on improv-
ing the accuracy and practical application of the algorithm.

Increased use of echocardiography and improved techniques 
are likely to increase the prevalence of ASD diagnosis, but 
economic conditions may be limiting. Although many people 
and institutions have begun to monitor birth defects, for sev-
eral reasons, it is difficult to obtain convincing epidemiologic 
data regarding CHD prevalence using auscultation.23 First, 
the screening for CHD can be greatly affected by variations 
in environmental noise, diagnostic methods, and the skills 
of physicians in different regions. Second, the narrow win-
dow (mostly within 7 days after delivery) usually makes it 
difficult to identify CHD with symptoms that develop after 
discharge.24,25 Third, echocardiographic analysis is not avail-
able at most facilities, and this approach is not suitable for 
large-scale screening. Given these factors, the surprisingly 
low prevalence of CHD (1.7-5.2 per 1000 people) derived from 
surveillance system data in China is understandable.8,26

The accuracy of our screening method has been proven to be 
satisfactory. More importantly, AI-assisted diagnosis is used 
in screening. Extensive follow-up modalities can be used to 
obtain true prevalence values in the study population.

Moreover, our results indicated a prevalence of mild CHD 
close to that reported in a past screening study, and the 3 
most common CHDs that we observed were VSD, ASD, and 
PDA. Overall, between 1970 and 2017, the prevalence of CHD 
increased by 10% every 5 years globally, with over 90% of this 
increase likely due to the increased detection of relatively 
mild lesions (VSD, ASD, and PDA).16 The sex-related CHD pat-
terns identified in our study are similar to those reported in 
the literature.27-29 Females are more likely to experience mild 
CHD. Most ASD cases are found in adulthood. Patent ductus 
arteriosus is often associated with a family history, which 
may be related to economic conditions and birth conditions. 
Congenital heart disease–pulmonary arterial hypertension 
is common in older men, and most of the cases are associated 
with extracardiac diseases.

Extracardiac abnormalities have been reported in approxi-
mately 20% of CHD cases. These findings are consistent with 
those of other studies.30,31

Although our screening reflects the prevalence of CHD in 518 
258 people and represents a diverse population within China, 
it is still not a population epidemiologic study. At present, the 
level of CHD diagnosis in China has reached that in devel-
oped countries. Many coastal provinces have established 
CHD screening and treatment networks. However, due to 

Table 7. Age Group Comparison

Age (years)

ASD (n = 126) VSD (n = 137) PDA (n = 63)

AI Error AI Correct AI Error AI Correct AI Error AI Correct

≤14 20 (21.7) 63 (61.3) 20 (19.5) 72 (72.5) 4 (3.9) 31 (31.1)

>14 13 (11.3) 30 (31.7) 9 (9.5) 36 (35.5) 3 (3.1) 25 (24.9)

χ2 = 0.5517, P = .458 χ2 = 0.0548, P = .815 *P = 1.000
The number in the bracket is the expected value. *For expected values <5, Fisher’s exact methods is used.
AI, artificial intelligence; ASD, atrial septal defect; PDA, patent ductal arteriosus; VSD, ventricular septal defect. 

Table 8. Accuracy Comparison

Auscultation 
Suspected Cases 

(n = 23 126)
AI Suspected 

Cases (n = 3120) P

Ultrasound, n 
(%)

3162 (13.67) 768 (24.61) .047

ASD, n (%) 537 (17.16) 117 (15.21) .790

VSD 1011 (32.21) 326 (42.50) .007

PDA 316 (10.13) 188 (24.50) .021
AI, artificial intelligence; ASD, atrial septal defect; PDA, patent ductal 
arteriosus; VSD, ventricular septal defect.

Table 9. Signal Classification and Recognition Based on the 
RNN

Sounds TP TN FP FN Se (%) Sp (%) Acc (%)

Normal 36 44 0 8 81.81 100 90

CHD-PAH 44 36 8 0 100 81.81 90

Total 80 80 8 8 90 90 90
CHD-PAH, congenital heart disease-associated pulmonary arterial 
hypertension; FN, false negative; FP, false positive; RNN, recurrent 
neural network; TN, true negative; TP, true positive.
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disparities in economic and medical resources, many children 
with CHD in deprived areas in Yunnan Province are still not 
diagnosed and treated in a timely manner. We recommend 
developing AI methods to screen and diagnose CHD and 
improve the diagnosis rate of CHD in these areas. With the 
implementation of these recommendations, morbidity and 
mortality due to CHD can be reduced at the national level.

The heart sounds included in the CHD-HSY database were 
obtained from several regions and collected in either clini-
cal or nonclinical environments from pathological patients. 
A total of 1892 heart sound recordings were obtained from 
5 locations. Abnormal heart sounds were recorded from 
patients with a confirmed cardiac diagnosis. The redun-
dant noise was removed from the heart sounds by filter-
ing. The normalized heart sounds were processed using 
an event-synchronous segmentation procedure. With the 
above experimental results, we can draw the following 
conclusions. Congenital heart disease heart sounds are sig-
nificantly different from normal heart sounds and can be 
distinguished and classified by pattern recognition and AI 
technology. CHD-PAH can be distinguished and classified 
by pattern recognition and AI technology. At present, the 
number of CHD heart sound samples is limited. Increasing 
the number of heart sound samples could enhance the veri-
fication of the existing pattern recognition algorithms based 
on AI, improve these algorithms, and improve the recog-
nition rate of various diseases. The limited data size con-
strains the development of state-of-the-art deep learning 
techniques. However, more advanced data augmentation 
methods, such as generative adversarial networks,32,33 which 
were recently successfully applied for snore sound recogni-
tion, could be developed.34 Unlike typical audio signals, e.g., 
speech or music signals, heart sounds are physiological sig-
nals. Therefore, more advanced signal processing methods 
should be considered.

For instance, wavelet transformation was found to be very 
efficient in our studies.35-39 Annotating heart sound data is 
an expensive and time-consuming task that requires profes-
sionally trained experts in cardiology. To reduce future work 
in expert annotation, active learning,40,41 and cooperative 
learning42 could be introduced and applied to these data. 
These types of fundamental knowledge, such as the rela-
tionship between acoustic representations and anatomi-
cal changes in the heart, should be investigated in detail in 
future work.

Study Limitation
The limitation of our study is that the study has a small num-
ber of patients. Further prospective studies with a larger 
number of patients are needed on this issue. Another limita-
tion is not all the people involved in the screening have been 
confirmed by echocardiography. Only the suspected people 
were examined by echocardiography, which may lead to 
some patients not being found.

CONCLUSION

Artificial intelligence-based auxiliary diagnosis achieves 
high accuracy in CHD screening and diagnosis. This approach 

is an effective auxiliary screening method that is worth pop-
ularizing in areas without high-level auscultation or ultra-
sonic Doppler available.
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