

## The Synergistic Relationship Between Erectile Dysfunction and Frontal QRS-T Angle in Predicting Coronary Artery Disease Severity: A Prospective Observational Study

### ABSTRACT

**Background:** Erectile dysfunction (ED) and coronary artery disease (CAD) frequently coexist, sharing common risk factors and pathophysiological mechanisms. The frontal QRS-T angle (fQRSTa), a novel electrocardiographic marker reflecting ventricular depolarization-repolarization heterogeneity, has been linked to adverse cardiac outcomes. However, the combined prognostic value of ED and fQRSTa in predicting CAD severity remains unexplored. The aim was to investigate whether the coexistence of ED and widened fQRSTa is associated with increased CAD severity, and to evaluate their individual and combined utility in identifying patients with advanced CAD.

**Methods:** This prospective observational study included 236 male patients undergoing first-time coronary angiography for suspected CAD. Patients were stratified into 4 groups based on ED status (International Index of Erectile Function-5 [IIEF-5]  $\leq 21$ ) and fQRSTa (cutoff: 52.5°). Coronary artery disease severity was assessed using the Gensini and SYNTAX scores. Hierarchical regression and correlation analyses were performed to evaluate associations.

**Results:** Erectile dysfunction prevalence was 62.7%, and patients with both ED and high fQRSTa exhibited significantly reduced ejection fraction and the highest Gensini and SYNTAX scores (all  $P < .001$ ). Regression analyses demonstrated that ED ( $\beta = 11.927$ ,  $P = .009$ , 95% CI: 2.014-21.839), high fQRSTa ( $\beta = 9.906$ ,  $P = .012$ , 95% CI: 2.710-22.523), and their interaction ( $\beta = 17.233$ ,  $P = .028$ , 95% CI: 1.906-32.560) were independent predictors of higher Gensini scores after full adjustment. Similar results were observed for SYNTAX scores. A moderate inverse correlation was found between IIEF-5 and fQRSTa ( $r = -0.436$ ,  $P < .001$ ).

**Conclusion:** Erectile dysfunction and widened fQRSTa are independently and synergistically associated with more severe CAD. Their coexistence identifies a high-risk subgroup with pronounced angiographic abnormalities.

**Keywords:** Cardiovascular risk score, coronary artery disease, electrocardiography, erectile dysfunction, risk assessment

### INTRODUCTION

Erectile dysfunction (ED) is defined as the inability to achieve and/or maintain a penile erection sufficient for satisfactory penetrative sexual intercourse.<sup>1</sup> Both ED and coronary artery disease (CAD) are common conditions that share overlapping pathophysiological mechanisms, including autonomic nervous system dysfunction and endothelial dysfunction.<sup>2,3</sup> Factors such as advanced age, dyslipidemia, hypertension, diabetes mellitus, metabolic syndrome, obesity, smoking, and a sedentary lifestyle have been identified as risk factors common to both ED and CAD.<sup>1,3-5</sup> The correlation between ED and CAD has been explained by the "artery size hypothesis," which suggests that atherosclerosis affects smaller arteries earlier than larger ones. Accordingly, ED may serve as an early indicator of systemic atherosclerosis and a precursor to overt CAD.<sup>1,4,6-8</sup>

The frontal QRS-T angle (fQRSTa) is defined as the angular difference between the direction of ventricular depolarization (QRS complex) and ventricular

### ORIGINAL INVESTIGATION

Pınar Özmen Yıldız<sup>1</sup> 

Mert Hamza Özüilen<sup>2</sup> 

<sup>1</sup>Department of Cardiology, Health Sciences University, Adana City Training and Research Hospital, Adana, Türkiye

<sup>2</sup>Department of Urology, Health Sciences University, Adana City Training and Research Hospital, Adana, Türkiye

#### Corresponding author:

Pınar Özmen Yıldız  
✉ pinarymn@hotmail.com

**Received:** July 30, 2025

**Accepted:** October 21, 2025

**Available Online Date:** November 21, 2025

**Cite this article as:** Özmen Yıldız P, Hamza Özüilen M. The synergistic relationship between erectile dysfunction and frontal QRS-T angle in predicting coronary artery disease severity: a prospective observational study. Anatol J Cardiol. 2026;30(1): 44-54.



Copyright@Author(s) - Available online at anatoljcardiol.com.  
Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

DOI:10.14744/AnatolJCardiol.2025.5683

repolarization (T wave). It serves as a novel marker of myocardial depolarization-repolarization heterogeneity, reflecting electrical instability in the ventricular myocardium.<sup>9,10</sup> Transient myocardial ischemia due to obstructive coronary artery stenosis may also contribute to ventricular axis changes, predisposing patients to ventricular arrhythmias.<sup>9,10</sup> Recent studies have demonstrated that a high fQRSTa is a predictor of all-cause and cardiac mortality, particularly in patients with CAD.<sup>9,11-13</sup>

However, the potential role of the coexistence of high fQRSTa and ED in patients with CAD remains unexplored. To this end, this study was conducted to investigate the relationship between fQRSTa and ED in the context of CAD severity and to determine whether their coexistence is associated with more severe forms of CAD.

## METHODS

### Study Design and Setting

This study was designed as a prospective observational study. The study protocol was reviewed and approved by the Ethics Committee of Health Sciences University, Adana City Training and Research Hospital (Date: April 10<sup>th</sup>, 2025; No.: 12/458). The study was conducted at the Departments of Cardiology and Urology at Adana City Training and Research Hospital, between April 10<sup>th</sup>, 2025, and June 9<sup>th</sup>, 2025, per the ethical principles outlined in the Declaration of Helsinki. Written informed consent was obtained from all patients.

### Population and Sample

The study population consisted of male patients aged 18 years or older who presented to the cardiology outpatient clinics with chest pain. Following clinical assessment, patients were scheduled for their first coronary angiography for suspected CAD based on indications outlined in current cardiology guidelines, such as the presence of ischemia on noninvasive stress tests (e.g., exercise electrocardiography, myocardial perfusion scintigraphy) or high pre-test probability for CAD. Patients with a history of CAD, including prior coronary angiography, coronary artery bypass grafting, or percutaneous coronary intervention, severe comorbidities such as stage 4 or higher chronic kidney disease, liver failure, atrial fibrillation, a history of prostate or vertebral surgery, hormonal disorders associated with ED, psychiatric or neurological diseases, Peyronie's disease, and patients who have

been using medications known to influence erectile function or electrocardiographic (ECG) parameters, e.g., antiarrhythmics, beta-blockers, phosphodiesterase-5 inhibitors, were excluded from the study. In the end, the study sample consisted of 236 patients.

### Electrocardiographic and Echocardiographic Evaluation

All patients underwent standard 12-lead ECG before undergoing angiography. The ECG parameters assessed included heart rate and fQRS-Ta. The fQRSTa was calculated automatically as the absolute value of the angular difference between the frontal QRS axis and the T wave axis. If the calculated value was greater than 180°, fQRSTa was adjusted to the minimum angle by subtracting the absolute value of the difference between fQRSTa and the T axis from 360°.<sup>11</sup> Echocardiographic (ECHO) parameters examined included left ventricular ejection fraction, end-diastolic and end-systolic diameters, and interventricular septal and posterior wall thicknesses.

### Assessment of the Erectile Function

To assess the presence and severity of ED, patients were asked to complete the International Index of Erectile Function-5 (IIEF-5), a validated self-administered questionnaire.<sup>14</sup> It consists of 5 items on sexual functions, including orgasm, erectile function, desire for sex, post-intercourse, and overall satisfaction, each scored from 0 to 5.<sup>6</sup> A total IIEF-5 score of 21 or less indicates ED. Accordingly, patients with IIEF-5 scores of 17 to 21, 12 to 16, 8 to 11, and 8 or less were classified as patients with mild, mild-to-moderate, moderate, and severe ED, respectively.<sup>6</sup>

### Coronary Angiography and Coronary Artery Disease Severity

All patients underwent diagnostic coronary angiography. Patients' CAD severity was quantified using Gensini scores (GS).<sup>15,16</sup> To this end, each lesion was assigned a score according to the percentage of stenosis: 1 for 25% stenosis, 2 for 50%, 4 for 75%, 8 for 90%, 16 for 99%, and 32 for total occlusion. Gensini scores of each patient was obtained by summing up the values obtained via multiplication by the coefficient defined for each major coronary artery and each segment, as described previously.<sup>15,17</sup> Consequently, patients with a GS between 1 and 20 and those with a GS of 20 or more were defined as having mild and severe CAD, respectively.<sup>18</sup>

Patients' synergy between percutaneous coronary intervention with taxus and cardiac surgery (SYNTAX) scores were calculated using the SYNTAX score calculator, version 2.28 (available at <https://syntaxscore.org/calculator/syntaxscore/frameset.htm>) to provide a secondary measure of disease burden. Accordingly, patients with SYNTAX scores of less than 23 and those with scores of 23 and above were considered to have a low and moderate-to-high disease burden, respectively.<sup>11</sup> Coronary artery disease presence was defined as ≥50% luminal stenosis in at least 1 major coronary artery, and non-CAD as <50% stenosis, in accordance with previous angiographic studies.<sup>19,20</sup>

### Patient Groups

To establish a data-driven threshold for the fQRSTa, a receiver operating characteristic (ROC) curve analysis was

## HIGHLIGHTS

- Erectile dysfunction and high frontal QRS-T angle demonstrated synergistic association with coronary artery disease severity.
- Patients with both conditions exhibited the highest angiographic scores.
- Combined assessment provides incremental prognostic value beyond traditional cardiovascular risk factors.
- The interaction remained significant after multivariable adjustment.
- This dual-marker approach offers practical cardiovascular risk stratification.

performed to predict the presence of CAD. The analysis revealed an area under the curve of 0.716 (95% CI: 0.639-0.794,  $P < .001$ ), indicating a significant predictive value. The optimal cutoff point was identified as 52.5°, which provided a sensitivity of 69.9% and a specificity of 70.0%.

Patients were subsequently stratified into 4 groups according to their fQRSTa (low angle vs. high angle, based on fQRSTa cutoff value of 52.5°) and ED status (ED-positivity based on IIEF score  $\leq 21$  vs. ED-negativity based on IIEF score  $> 21$ ):

- Group 1 (n=63): Low fQRSTa, no ED.
- Group 2 (n=57): Low fQRSTa, with ED (mild, moderate, or severe).
- Group 3 (n=25): High fQRSTa, no ED.
- Group 4 (n=91): High fQRSTa, with ED (mild, moderate, or severe).

Randomization was not employed in the allocation of these groups.

### Data Collection

Patients' sociodemographic characteristics, i.e., age, weight, height, body mass index (BMI), education level, and marital status, and clinical characteristics, i.e., smoking status, alcohol use, comorbidities such as hypertension, diabetes mellitus, hyperlipidemia, chronic kidney disease, and chronic obstructive pulmonary disease, familial history of CAD, concomitant medication use, including statins, calcium channel blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and thiazide diuretics, were collected using a standardized case report form.

Laboratory tests performed on patients included complete blood count (hemoglobin, leukocyte, and platelet counts), lipid profile (total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglyceride), fasting glucose and hemoglobin A1C (HbA1C), serum creatinine tests, estimated glomerular filtration rate (eGFR), and electrolyte tests (calcium and potassium). No blinding was employed during data collection or analysis.

### Statistical Analysis

Statistical analyses were performed using Jamovi (version 2.3.28) and JASP (Jeffreys's Amazing Statistics Program, version 0.19.2) software. Descriptive statistics were presented as mean  $\pm$  SD for normally distributed variables, median [minimum-maximum] for non-normally distributed variables, and as frequency (n) and percentage (%) for categorical variables. The normality of data distribution was assessed using the Shapiro-Wilk test and visual inspection of histograms. Depending on the data distribution, group comparisons for continuous variables were performed using one-way ANOVA with Tukey's post-hoc test or the Kruskal-Wallis H test with Dunn's post-hoc test. Categorical variables were compared using Pearson's chi-square or the Fisher-Freeman-Halton test, as appropriate. A  $P$ -value of  $\leq .05$  was considered statistically significant.

### RESULTS

The prevalence of ED in the sample was 62.7%. Fifty (33.7%) patients had mild-to-moderate ED, 39 (26.4%) moderate

ED, 38 (27.7%) mild ED, and 21 (14.2%) had severe ED. There were no significant differences between the study groups in terms of age, weight, height, BMI, marital status, smoking status, alcohol consumption, or comorbidities ( $P$ -values ranged from .052 to .983) (Table 1). On the other hand, a significant difference was found between the study groups in terms of education level ( $P = .015$ ). Accordingly, there were significantly more patients who had graduated from an elementary school at the latest in Group 4 than in other groups. Additionally, in terms of echocardiographic parameters, only the ejection fraction (EF) showed a statistically significant difference between the groups ( $P < .001$ ). Post hoc analysis revealed that EF was significantly lower in Group 4 than in Groups 1 and 2 ( $P = .004$  and  $P = .006$ , respectively). No significant differences were found between the groups in heart rate, left ventricular diameter, or wall thickness ( $P$ -values ranged from .092 to .875).

Of the 236 patients included in the study, 176 (74.6%) were diagnosed with CAD, while 60 (25.4%) were categorized as non-CAD (<50% stenosis). Angiographic scoring revealed significant differences between the study groups in both Gensini and SYNTAX scores ( $P < .001$  for both) (Table 2). Accordingly, Group 4 had significantly higher GS and SYNTAX scores than Groups 2 and 3, and Groups 2 and 3 had significantly higher GS and SYNTAX scores than Group 1 (Figures 1A and B). Gensini score ( $P = .519$ ) and SYNTAX ( $P = .663$ ) scores did not differ significantly between Groups 2 and 3. Post hoc analysis revealed significantly more patients with GS-based severe CAD in Group 4 than in other groups and in Groups 2 and 3 than in Group 1 ( $P < .001$ ). Similarly, there were significantly more patients with moderate and high SYNTAX score-based disease burden in Group 4 than in other groups ( $P < .001$ ). Reflecting these findings, a significant difference was also observed in the overall diagnosis of CAD ( $P < .001$ ). The prevalence of CAD was highest in Group 4 (95.6%), and conversely, the rate of non-CAD patients was significantly lower in this group (4.4%) compared to all others.

There were significant differences between the groups in hemoglobin ( $P < .001$ ), glucose ( $P < .001$ ), HbA1c ( $P = .011$ ), creatinine ( $P = .036$ ), calcium levels ( $P = .009$ ), and eGFR ( $P = .001$ ) (Table 3). The glucose level was significantly lower in Group 1 than in Groups 2 and 4 ( $P = .003$  and  $P < .001$ , respectively). No significant differences were found between the groups in leukocyte or platelet counts, lipid profiles, triglyceride, or potassium levels ( $P$ -values ranged from .069 to .833).

The hierarchical regression models revealed that both ED positivity (IIEF score  $\leq 21$ ) and high fQRSTa ( $\geq 52.5^\circ$ ) were independently associated with more severe CAD, as assessed by GS and SYNTAX score (Table 4, Figure 2). Accordingly, Model 1 revealed that ED ( $\beta = 16.082$ ,  $P = .002$ , 95% CI: 6.144-26.020) and high fQRSTa ( $\beta = 13.642$ ,  $P = .038$ , 95% CI: 0.792-26.492) were significantly associated with higher GS-based CAD severity, and their interaction was also significant ( $\beta = 16.888$ ,  $P = .036$ , 95% CI: 1.094-32.682). These correlations remained significant after adjustment for potentially confounding variables, including demographic characteristics,

**Table 1. Demographic and Clinical Characteristics of Patients Stratified by Frontal QRS-T Angle and Erectile Dysfunction Status**

|                                                               | <b>Group 1 (n=63)</b>         | <b>Group 2 (n=57)</b>         | <b>Group 3 (n=25)</b>           | <b>Group 4 (n=91)</b>         | <b>P</b>         |
|---------------------------------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------------|------------------|
| Age (years) <sup>†</sup>                                      | 59.0 ± 12.1                   | 61.1 ± 9.2                    | 61.6 ± 10.5                     | 61.4 ± 10.7                   | .546***          |
| Weight (kg) <sup>§</sup>                                      | 85.0 [53.0-114.0]             | 83.0 [58.0-130.0]             | 80.0 [67.0-122.0]               | 80.0 [48.0-116.0]             | .323*            |
| Height (cm) <sup>§</sup>                                      | 174.0 [160.0-185.0]           | 171.0 [162.0-185.0]           | 174.0 [160.0-188.0]             | 171.0 [155.0-185.0]           | .052*            |
| BMI (kg/m <sup>2</sup> ) <sup>§</sup>                         | 27.8 [20.4-37.9]              | 27.7 [20.3-45.0]              | 27.1 [23.2-39.5]                | 27.3 [17.6-40.8]              | .836*            |
| Education level, n (%) <sup>‡</sup>                           |                               |                               |                                 |                               |                  |
| Primary                                                       | 25 (39.7) <sup>a</sup>        | 33 (57.9) <sup>a,b</sup>      | 17 (68.0) <sup>a,b</sup>        | 57 (62.6) <sup>b</sup>        | <b>.015**</b>    |
| Secondary                                                     | 29 (46.0) <sup>a</sup>        | 20 (35.1) <sup>a</sup>        | 5 (20.0) <sup>a,b</sup>         | 19 (20.9) <sup>b</sup>        |                  |
| University                                                    | 9 (14.3) <sup>a</sup>         | 4 (7.0) <sup>a</sup>          | 3 (12.0) <sup>a</sup>           | 15 (16.5) <sup>a</sup>        |                  |
| Marital status, n (%) <sup>‡</sup>                            |                               |                               |                                 |                               |                  |
| Married                                                       | 51 (81.0)                     | 53 (93.0)                     | 24 (96.0)                       | 82 (90.1)                     | .081**           |
| Single                                                        | 7 (11.1)                      | 0 (0.0)                       | 0 (0.0)                         | 2 (2.2)                       |                  |
| Divorced/widowed                                              | 5 (7.9)                       | 4 (7.0)                       | 1 (4.0)                         | 7 (7.7)                       |                  |
| Smoking, n (%) <sup>‡</sup>                                   | 34 (54.0)                     | 29 (50.9)                     | 13 (52.0)                       | 49 (53.8)                     | .983**           |
| Alcohol consumption, n (%) <sup>‡</sup>                       | 16 (25.4)                     | 10 (17.5)                     | 6 (24.0)                        | 10 (11.0)                     | .110**           |
| Comorbidities, n (%) <sup>‡</sup>                             |                               |                               |                                 |                               |                  |
| Hypertension                                                  | 16 (25.4)                     | 17 (29.8)                     | 8 (32.0)                        | 33 (36.3)                     | .547**           |
| Diabetes mellitus                                             | 14 (22.2)                     | 22 (38.6)                     | 7 (28.0)                        | 37 (40.7)                     | .084**           |
| Hyperlipidemia                                                | 26 (41.3)                     | 31 (54.4)                     | 6 (24.0)                        | 47 (51.6)                     | .053**           |
| Chronic kidney disease                                        | 1 (1.6)                       | 3 (5.3)                       | 0 (0.0)                         | 9 (9.9)                       | .108**           |
| Chronic obstructive pulmonary disease                         | 8 (12.7)                      | 4 (7.0)                       | 3 (12.0)                        | 10 (11.0)                     | .769**           |
| Family history of coronary artery disease, n (%) <sup>‡</sup> | 32 (50.8)                     | 23 (40.4)                     | 9 (36.0)                        | 35 (38.5)                     | .407**           |
| Medications, n (%) <sup>‡</sup>                               |                               |                               |                                 |                               |                  |
| Statins                                                       | 17 (27.0)                     | 18 (31.6)                     | 6 (24.0)                        | 32 (35.2)                     | .616**           |
| Calcium channel blockers                                      | 8 (12.7)                      | 8 (14.0)                      | 4 (16.0)                        | 16 (17.6)                     | .855**           |
| ACEi/ARB                                                      | 10 (15.9)                     | 15 (26.3)                     | 6 (24.0)                        | 26 (28.6)                     | .324**           |
| Thiazide diuretics                                            | 10 (15.9)                     | 10 (17.5)                     | 2 (8.0)                         | 11 (12.1)                     | .614**           |
| Echocardiographic parameters <sup>§</sup>                     |                               |                               |                                 |                               |                  |
| Heart rate (bpm)                                              | 75.0 [53.0-110.0]             | 74.0 [53.0-119.0]             | 69.0 [56.0-117.0]               | 76.0 [55.0-126.0]             | .219*            |
| Ejection fraction                                             | 58.0 [25.0-65.0] <sup>a</sup> | 55.0 [30.0-68.0] <sup>a</sup> | 58.0 [25.0-65.0] <sup>a,b</sup> | 50.0 [30.0-60.0] <sup>b</sup> | <b>&lt;.001*</b> |
| End-diastolic left ventricular diameter (mm)                  | 51.0 [45.0-63.0]              | 51.0 [44.0-59.0]              | 53.0 [45.0-65.0]                | 51.0 [42.0-65.0]              | .875*            |
| End-systolic left ventricular diameter (mm)                   | 36.0 [30.0-59.0]              | 37.0 [28.0-52.0]              | 37.0 [30.0-56.0]                | 38.0 [27.0-57.0]              | .092*            |
| Interventricular septal thickness (mm)                        | 10.0 [7.0-13.0]               | 10.0 [7.0-13.0]               | 10.0 [8.0-13.0]                 | 10.0 [7.0-16.0]               | .433*            |
| Posterior wall thickness (mm)                                 | 9.0 [7.0-12.0]                | 9.0 [7.0-12.0]                | 9.0 [7.0-13.0]                  | 9.0 [6.0-12.0]                | .475*            |

The participants were divided into 4 groups based on frontal QRS-T angle (fQRSTa) and erectile dysfunction (ED) status. Group 1 included patients with low fQRSTa without ED; Group 2 comprised patients with low fQRSTa with ED; Group 3 consisted of patients with high fQRSTa without ED; and Group 4 included patients with high fQRSTa with ED. Data are presented as mean ± SD (†) for age, median [minimum-maximum] (§) for weight, height, BMI, and echocardiographic parameters, and frequency with percentage (‡) for categorical variables. The a,b superscripts denote the results of post-hoc analysis; groups with different letters differ significantly from each other. Statistical comparisons were performed using Kruskal-Wallis H test (\*) for non-normally distributed continuous variables, One-Way ANOVA (\*\*\*\*) for normally distributed continuous variables, and Pearson Chi-Square or Fisher-Freeman-Halton test (\*\*) for categorical variables. Post hoc comparisons for Kruskal-Wallis and ANOVA were conducted using Dunn's test with Bonferroni correction and Tukey's Honestly Significant Difference (HSD) test, respectively. Bold P-values indicate statistical significance ( $P \leq .05$ ).

ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blockers; BMI, body mass index; bpm, beats per minute; ED, erectile dysfunction; fQRSTa, frontal QRS-T angle; mm, millimeters.

cardiovascular risk factors, and laboratory parameters in Model 4. In the final model, ED ( $\beta=11.927$ ,  $P=.009$ , 95% CI: 2.014-21.839), high fQRSTa ( $\beta=9.906$ ,  $P=.012$ , 95% CI: 2.710-22.523), and their interaction ( $\beta=17.233$ ,  $P=.028$ , 95% CI: 1.906-32.560) remained significant predictors of higher GS.

Additional significant predictors included only hemoglobin ( $\beta=-3.209$ ,  $P=.003$ , 95% CI: -5.334 to -1.085).

Similarly, Model 1 revealed that ED ( $\beta=5.524$ ,  $P < .001$ , 95% CI: 2.478-8.570), high fQRSTa ( $\beta=4.643$ ,  $P=.021$ , 95% CI:

**Table 2. Comparison of Angiographic Characteristics Among Patient Groups Stratified by Frontal QRS-T Angle and Erectile Dysfunction Status**

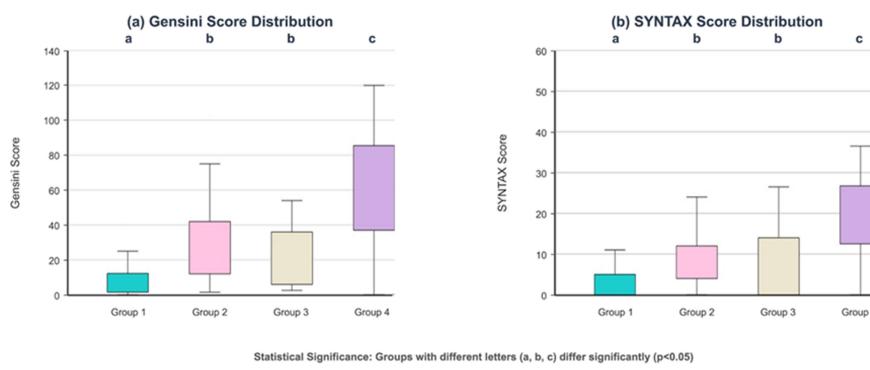
|                                                       | <b>Group 1 (n=63)</b>         | <b>Group 2 (n=57)</b>         | <b>Group 3 (n=25)</b>         | <b>Group 4 (n=91)</b>         | <b>P</b> |
|-------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------|
| IIEF-5 score <sup>§</sup>                             | 24.0 [22.0-25.0] <sup>a</sup> | 15.0 [5.0-21.0] <sup>b</sup>  | 23.0 [22.0-25.0] <sup>a</sup> | 12.0 [5.0-21.0] <sup>b</sup>  | <.001*   |
| Gensini score <sup>§</sup>                            | 6.0 [0.0-130.0] <sup>a</sup>  | 22.0 [1.5-124.0] <sup>b</sup> | 20.0 [2.5-120.0] <sup>b</sup> | 56.0 [0.0-120.0] <sup>c</sup> | <.001*   |
| Severity grouping based on Gensini score <sup>‡</sup> |                               |                               |                               |                               |          |
| Mild (1-20), n (%)                                    | 54 (85.7) <sup>a</sup>        | 26 (45.6) <sup>b</sup>        | 12 (48.0) <sup>b</sup>        | 7 (7.7) <sup>c</sup>          | <.001**  |
| Severe ( $\geq 20$ ), n (%)                           | 9 (14.3) <sup>a</sup>         | 31 (54.4) <sup>b</sup>        | 13 (52.0) <sup>b</sup>        | 84 (92.3) <sup>c</sup>        |          |
| SYNTAX score <sup>§</sup>                             | 0.0 [0.0-27.5] <sup>a</sup>   | 9.0 [0.0-33.0] <sup>b</sup>   | 7.0 [0.0-26.5] <sup>b</sup>   | 20.5 [0.0-52.0] <sup>c</sup>  | <.001*   |
| Risk groups based on SYNTAX score, n (%) <sup>‡</sup> |                               |                               |                               |                               |          |
| Low ( $< 23$ )                                        | 61 (96.8) <sup>a</sup>        | 52 (91.2) <sup>a</sup>        | 23 (92.0) <sup>a</sup>        | 50 (54.9) <sup>b</sup>        | <.001**  |
| Moderate-high ( $\geq 23$ )                           | 2 (3.2) <sup>a</sup>          | 5 (8.8) <sup>a</sup>          | 2 (8.0) <sup>a</sup>          | 41 (45.1) <sup>b</sup>        |          |
| CAD diagnosis, n (%) <sup>‡</sup>                     |                               |                               |                               |                               |          |
| Non-CAD (<50% stenosis)                               | 36 (57.1) <sup>a</sup>        | 12 (21.1) <sup>b</sup>        | 8 (32.0) <sup>a,b</sup>       | 4 (4.4) <sup>c</sup>          | <.001**  |
| CAD presence                                          | 27 (42.9) <sup>a</sup>        | 45 (78.9) <sup>b</sup>        | 17 (68.0) <sup>a,b</sup>      | 87 (95.6) <sup>c</sup>        |          |

Table 2 displays coronary artery disease presence and severity across the 4 patient groups stratified by frontal QRS-T angle (fQRSTa) and erectile dysfunction (ED) status. Group 1 included patients with low fQRSTa without ED; Group 2 comprised patients with low fQRSTa with ED; Group 3 consisted of patients with high fQRSTa without ED; and Group 4 included patients with high fQRSTa with ED. Data are presented as median [minimum-maximum] (§) for continuous variables and frequency with percentage (‡) for categorical variables. Statistical analyses were performed using Kruskal-Wallis H test (\*) for continuous variables and Pearson Chi-Square or Fisher-Freeman-Halton test (\*\*) for categorical variables. The different superscript letters (a, b, c) indicate statistically significant differences between groups based on post-hoc analysis using Dunn's test with Bonferroni correction. Groups sharing the same superscript letter do not differ significantly from each other, while groups with different letters represent statistically significant differences ( $P \leq .05$ ). Bold P-values indicate statistical significance ( $P \leq .05$ ).

CAD, coronary artery disease; ED, erectile dysfunction; fQRSTa, frontal QRS-T angle; Gensini, Gensini coronary artery disease severity scoring system; SYNTAX, SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery scoring system.

0.705-8.582), and their interaction ( $\beta = 5.645$ ,  $P = .022$ , 95% CI: 0.804-10.485) were significantly associated with higher SYNTAX score-based CAD severity. These correlations remained significant across Models 2 to 4, with the interaction term maintaining significance in the model fully adjusted for potentially confounding variables ( $\beta = 5.864$ ,  $P = .015$ , 95% CI: 1.167-10.561). In the final model, only hemoglobin ( $\beta = -1.216$ ,  $P < .001$ , 95% CI: -1.867 to -0.565) was additionally found to be associated with SYNTAX score-based CAD severity.

The addition of each block of variables resulted in significant improvements in the explained variance for both GS ( $\Delta R^2 = 0.038$ ,  $P = .031$ ) and the SYNTAX score ( $\Delta R^2 = 0.041$ ,  $P = .011$ ) in the final model.


The Spearman's correlation analysis revealed statistically significant relationships among the assessed parameters (Table 5). A moderate negative correlation was detected between the IIEF-5 score and fQRSTa ( $r = -0.436$ ,  $P < .001$ ). Furthermore, the fQRSTa was found to have a moderate positive correlation with both the Gensini score ( $r = 0.495$ ,  $P < .001$ ) and the SYNTAX score ( $r = 0.484$ ,  $P < .001$ ). Similarly, the IIEF-5 score was observed to have a moderate negative relationship with both the Gensini score ( $r = -0.597$ ,  $P < .001$ ) and the SYNTAX score ( $r = -0.579$ ,  $P < .001$ ).

## DISCUSSION

Our study's findings indicated that the coexistence of ED-positivity and high fQRSTa was independently and

### Coronary Artery Disease Severity Scores by Patient Groups

Stratified by Frontal QRS-T Angle and Erectile Dysfunction Status



**Figure 1. Schematic representation of a) the Gensini and b) SYNTAX scores among the groups.**

**Table 3. Laboratory Parameters of Patient Groups Classified According to Frontal QRS-T Angle and Erectile Dysfunction Status**

|                                                          | <b>Group 1 (n=63)</b>           | <b>Group 2 (n=57)</b>            | <b>Group 3 (n=25)</b>            | <b>Group 4 (n=91)</b>           | <b>P*</b>         |
|----------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|-------------------|
| Hemoglobin (g/dL) <sup>§</sup>                           | 15.1 [12.2-17.0] <sup>a</sup>   | 14.0 [9.1-16.4] <sup>b</sup>     | 14.2 [8.8-16.2] <sup>a,b</sup>   | 13.6 [7.9-17.8] <sup>b</sup>    | <b>&lt;.001*</b>  |
| Low hemoglobin (<10.9 g/dL) <sup>‡</sup>                 | 0 (0.0) <sup>a</sup>            | 3 (5.3) <sup>a,b</sup>           | 3 (12.0) <sup>b</sup>            | 11 (12.1) <sup>b</sup>          | <b>.008**</b>     |
| Leukocyte count (/μL) <sup>§</sup>                       | 8.2 [4.4-15.2]                  | 9.2 [4.7-16.3]                   | 9.0 [4.7-17.9]                   | 9.0 [1.8-19.0]                  | .769*             |
| Platelet count (/μL) <sup>§</sup>                        | 278.0 [136.0-703.0]             | 234.0 [150.0-435.0]              | 262.0 [132.0-508.0]              | 249.0 [68.0-890.0]              | .069*             |
| Glucose (mg/dL) <sup>§</sup>                             | 96.0 [74.0-302.0] <sup>a</sup>  | 118.0 [67.0-317.0] <sup>b</sup>  | 99.0 [73.0-403.0] <sup>a,b</sup> | 118.0 [73.0-372.0] <sup>b</sup> | <b>&lt;.001*</b>  |
| High glucose (>106 mg/dL) <sup>‡</sup>                   | 20 (31.7) <sup>a</sup>          | 37 (64.9) <sup>b</sup>           | 11 (44.0) <sup>a,b</sup>         | 53 (58.2) <sup>b</sup>          | <b>.001**</b>     |
| HbA1c <sup>§</sup>                                       | 5.6 [4.2-10.4] <sup>a</sup>     | 5.8 [4.3-12.4] <sup>a,b</sup>    | 5.4 [4.4-11.2] <sup>a,b</sup>    | 5.9 [4.2-11.0] <sup>b</sup>     | <b>.011*</b>      |
| High HbA1c (>5.6) <sup>‡</sup>                           | 25 (39.7) <sup>a</sup>          | 31 (54.4) <sup>a,b</sup>         | 12 (48.0) <sup>a,b</sup>         | 58 (63.7) <sup>b</sup>          | <b>.029**</b>     |
| Creatinine (mg/dL) <sup>§</sup>                          | 0.8 [0.5-1.4] <sup>a,b</sup>    | 0.8 [0.5-2.4] <sup>a</sup>       | 0.9 [0.7-1.3] <sup>a,b</sup>     | 0.9 [0.5-2.4] <sup>b</sup>      | <b>.036*</b>      |
| High creatinine (>0.95 mg/dL) <sup>‡</sup>               | 15 (23.8) <sup>a</sup>          | 12 (21.1) <sup>a</sup>           | 5 (20.0) <sup>a</sup>            | 34 (37.4) <sup>b</sup>          | <b>.042**</b>     |
| eGFR (mL/dk/1.73m <sup>2</sup> ) <sup>§</sup>            | 102.0 [46.0-144.0] <sup>a</sup> | 95.0 [32.0-129.0] <sup>a,b</sup> | 93.0 [56.0-115.0] <sup>a,b</sup> | 89.0 [27.0-122.0] <sup>b</sup>  | <b>.001*</b>      |
| High eGFR (>90 mL/min/1.73 m <sup>2</sup> ) <sup>‡</sup> | 47 (74.6) <sup>a</sup>          | 39 (68.4) <sup>a</sup>           | 14 (56.0) <sup>a,b</sup>         | 41 (45.1) <sup>b</sup>          | <b>.001**</b>     |
| Total cholesterol (mg/dL) <sup>§</sup>                   | 194.0 [101.0-309.0]             | 175.0 [92.0-357.0]               | 195.0 [114.0-300.0]              | 179.0 [91.0-325.0]              | .284*             |
| HDL cholesterol (mg/dL) <sup>§</sup>                     | 41.0 [26.0-74.0]                | 44.0 [24.0-62.0]                 | 42.0 [30.0-65.0]                 | 39.0 [22.0-80.0]                | .266*             |
| LDL-cholesterol (mg/dL) <sup>§</sup>                     | 131.0 [57.0-212.0]              | 119.0 [54.0-246.0]               | 126.0 [73.0-207.0]               | 124.0 [50.0-220.0]              | .221*             |
| Triglyceride (mg/dL) <sup>§</sup>                        | 165.0 [61.0-765.0]              | 165.0 [37.0-849.0]               | 137.0 [61.0-330.0]               | 142.0 [40.0-1652.0]             | .583*             |
| Calcium (mg/dL) <sup>§</sup>                             | 9.2 [8.5-10.3] <sup>a</sup>     | 9.1 [7.9-10.2] <sup>a,b</sup>    | 9.3 [8.3-10.5] <sup>a,b</sup>    | 9.1 [7.3-10.5] <sup>b</sup>     | <b>.009*</b>      |
| Low calcium (<8.8 mg/dL) <sup>‡</sup>                    | 3 (4.8) <sup>a</sup>            | 13 (22.8) <sup>b</sup>           | 2 (8.0) <sup>a,b</sup>           | 26 (28.6) <sup>b</sup>          | <b>&lt;.001**</b> |
| Potassium (mEq/L) <sup>§</sup>                           | 4.2 [3.7-5.0]                   | 4.2 [3.4-5.6]                    | 4.2 [3.6-5.1]                    | 4.3 [3.1-5.4]                   | .833*             |

Table 3 presents laboratory parameters across the 4 patient groups stratified by frontal QRS-T angle (fQRSTa) and erectile dysfunction (ED) status. Group 1 included patients with low fQRSTa without ED; Group 2 comprised patients with low fQRSTa with ED; Group 3 consisted of patients with high fQRSTa without ED; and Group 4 included patients with high fQRSTa with ED. Data are presented as median [minimum-maximum] (§) for continuous variables and frequency (%) for categorical variables. Statistical analyses were performed using Kruskal-Wallis H test (\*) for continuous variables and Pearson Chi-Square or Fisher-Freeman-Halton test (\*\*) for categorical variables. The different superscript letters (a, b) indicate statistically significant differences between groups based on post-hoc analysis using Dunn's test with Bonferroni correction. Groups sharing the same superscript letter do not differ significantly from each other, while groups with different letters represent statistically significant differences ( $P \leq .05$ ). Bold P-values indicate statistical significance ( $P \leq .05$ ).

ED, erectile dysfunction; eGFR, estimated glomerular filtration rate; fQRSTa, frontal QRS-T angle; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

synergistically associated with increased CAD severity, as assessed by both GS and SYNTAX score. Among the 4 study groups, Group 4, which included patients with ED and high fQRSTa, had the most adverse ECHO and angiography profiles. The median EF was significantly lower in Group 4 than in other groups.

Erectile dysfunction is a common condition, particularly in elderly, obese, or diabetic males with CAD.<sup>6,16,21</sup> Although some studies have questioned the relationship between ED severity and the extent of coronary involvement,<sup>6</sup> accumulating evidence supports ED as a reliable marker of CAD severity.<sup>1,22</sup> The Second Princeton Consensus Guidelines recommend that men with ED should be regarded as cardiac or vascular patients, even in the absence of overt cardiac symptoms.<sup>23</sup> Memon et al<sup>4</sup> found ED to be significantly associated with age, diabetes, hypertension, and positive exercise stress test results, reinforcing the notion that ED may be a surrogate marker for systemic atherosclerosis. Similarly, other authors have emphasized that the presence of organic ED in asymptomatic men should prompt cardiovascular risk stratification.<sup>2</sup> In parallel, it was found that ED independently predicts coronary atherosclerotic burden when assessed in conjunction with fQRSTa.

Öncel and Akkoç<sup>3</sup> reported prolonged P-wave dispersion in ED patients and a significant negative correlation between

IIEF score and P-wave dispersion. They also found that fragmented QRS complexes, an established marker of myocardial scarring and ischemia, were correlated with ED.<sup>7,24</sup> These findings suggest that ED may signal underlying cardiac electrical instability. Atrial fibrillation, another arrhythmogenic condition, has also been associated with ED.<sup>3,25-27</sup> Similarly, it was found that fQRSTa, a marker of repolarization heterogeneity, is negatively correlated with erectile function, suggesting the interplay between cardiovascular electrical instability and ED.

It is important to note that there is no universally accepted cutoff value for fQRSTa, and this has been a subject of discussion in the literature. Tanrıverdi et al<sup>28</sup> highlighted the challenges of using fixed, predefined thresholds across different patient populations. In line with this, rather than adopting a pre-existing value, we determined the optimal fQRSTa cutoff for predicting the presence of CAD in this specific patient cohort through ROC curve analysis. This approach ensures that the cutoff value of 52.5° is empirically derived and most relevant to the clinical question of this study, thereby strengthening its validity.

While prior studies have shown that ED and fQRSTa can independently predict severe CAD in separate populations,<sup>9-11,29</sup> this study is the first to propose using their combination as a composite screening tool for CAD. By demonstrating

**Table 4.** Hierarchical Regression Analysis of Erectile Dysfunction and Frontal QRS-T Angle on Coronary Artery Disease Severity

| Variables                                 | Model 1  |                 |              | Model 2       |                 |                 | Model 3       |             |                  | Model 4       |             |                   |
|-------------------------------------------|----------|-----------------|--------------|---------------|-----------------|-----------------|---------------|-------------|------------------|---------------|-------------|-------------------|
|                                           | $\beta$  | P               | 95% CI       | $\beta$       | P               | 95% CI          | $\beta$       | P           | 95% CI           | $\beta$       | P           | 95% CI            |
| Gensini Score as Dependent Variable       |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| Main Effects                              |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| ED presence (0=absent, 1=present)         | 16.082   | <b>.002</b>     | 6.144-26.020 | 16.259        | <b>.001</b>     | 6.429-26.090    | 15.663        | <b>.002</b> | 5.731-25.594     | 11.927        | <b>.009</b> | 2.014-21.839      |
| High fQRSTa (0=low <52.5°, 1=high ≥52.5°) | 13.642   | <b>.038</b>     | 0.792-26.492 | 13.623        | <b>.036</b>     | 0.917-26.329    | 13.279        | <b>.042</b> | 0.480-26.078     | 9.906         | <b>.012</b> | 2.710-22.523      |
| ED × fQRSTa interaction                   | 16.888   | <b>.036</b>     | 1.094-32.682 | 16.338        | <b>.040</b>     | 0.731-31.946    | 16.546        | <b>.038</b> | 0.885-32.206     | 17.233        | <b>.028</b> | 1.906-32.560      |
| Demographic variables                     |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| Age (years)                               | –        |                 |              | 0.032         | .848            | -0.364 to 0.299 | 0.056         | .758        | -0.304 to 0.417  | 0.166         | .425        | -0.243 to 0.574   |
| BMI (kg/m <sup>2</sup> )                  | –        |                 |              | 1.267         | .438            | -0.400 to 2.134 | 1.114         | .149        | -0.219 to 2.009  | 0.854         | .059        | -0.034 to 1.743   |
| Cardiovascular risk factors               |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| Diabetes mellitus (0=absent, 1=present)   | –        |                 |              | –             |                 |                 | 4.390         | .264        | -3.328 to 12.108 | 0.869         | .881        | -10.535 to 12.273 |
| Hypertension (0=absent, 1=present)        | –        |                 |              | –             |                 |                 | 1.523         | .700        | -6.257 to 9.303  | 3.542         | .364        | -4.128 to 11.212  |
| Hyperlipidemia (0=absent, 1=present)      | –        |                 |              | –             |                 |                 | 0.535         | .886        | -6.835 to 7.906  | 0.255         | .944        | -6.942 to 7.453   |
| Smoking (0=absent, 1=present)             | –        |                 |              | –             |                 |                 | 5.896         | .135        | -1.854 to 13.646 | 7.356         | .060        | -0.318 to 15.030  |
| Laboratory parameters                     |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| HbA1c (%)                                 | –        |                 |              | –             |                 |                 | –             |             |                  | 1.907         | .264        | -1.448 to 5.261   |
| eGFR (mL/min/1.73m <sup>2</sup> )         | –        |                 |              | –             |                 |                 | –             |             |                  | -0.160        | .168        | -0.387 to 0.068   |
| Hemoglobin (g/dL)                         | –        |                 |              | –             |                 |                 | –             |             |                  | -3.209        | <b>.003</b> | -5.334 to -1.085  |
| Model statistics                          |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| R <sup>2</sup>                            | 0.335    |                 |              | 0.358         |                 |                 | 0.369         |             |                  | 0.407         |             |                   |
| Adjusted R <sup>2</sup>                   | 0.326    |                 |              | 0.344         |                 |                 | 0.343         |             |                  | 0.375         |             |                   |
| ΔR <sup>2</sup>                           | –        |                 |              | <b>0.023*</b> |                 |                 | <b>0.010*</b> |             |                  | <b>0.038*</b> |             |                   |
| F-statistic                               | 38.95*** |                 |              | 25.68***      |                 |                 | 14.66***      |             |                  | 12.74***      |             |                   |
| SYNTAX score as dependent variable        |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| Main effects                              |          |                 |              |               |                 |                 |               |             |                  |               |             |                   |
| ED presence (0=absent, 1=present)         | 5.524    | <b>&lt;.001</b> | 2.478-8.570  | 5.458         | <b>&lt;.001</b> | 2.421-8.495     | 5.005         | <b>.001</b> | 1.947-8.063      | 3.724         | <b>.002</b> | 0.687-6.762       |
| High fQRSTa (0=low <52.5°, 1=high ≥52.5°) | 4.643    | <b>.021</b>     | 0.705-8.582  | 4.515         | <b>.024</b>     | 0.589-8.440     | 4.645         | <b>.021</b> | 0.704-8.585      | 3.529         | <b>.017</b> | 0.338-7.395       |

(Continued)

Table 4. Hierarchical Regression Analysis of Erectile Dysfunction and Frontal QRS-T Angle on Coronary Artery Disease Severity (Continued)

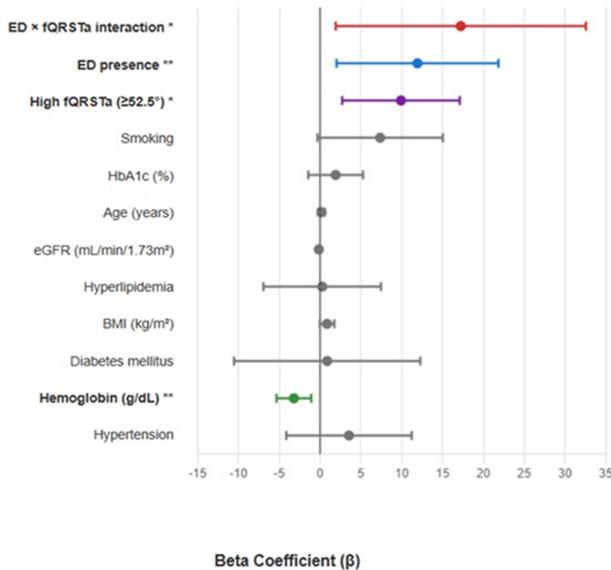
| Variables                                   | Model 1 |             |              |               | Model 2     |                 |               |             | Model 3         |               |                 |                  | Model 4 |          |        |  |
|---------------------------------------------|---------|-------------|--------------|---------------|-------------|-----------------|---------------|-------------|-----------------|---------------|-----------------|------------------|---------|----------|--------|--|
|                                             | $\beta$ | P           | 95% CI       | $\beta$       | P           | 95% CI          | $\beta$       | P           | 95% CI          | $\beta$       | P               | 95% CI           | $\beta$ | P        | 95% CI |  |
| ED × fQRSTa interaction                     | 5.645   | <b>.022</b> | 0.804-10.485 | 5.647         | <b>.022</b> | 0.826-10.469    | 5.488         | <b>.026</b> | 0.667-10.310    | 5.864         | <b>.015</b>     | 1.167-10.561     |         |          |        |  |
| Demographic variables                       |         |             |              |               |             |                 |               |             |                 |               |                 |                  |         |          |        |  |
| Age (years)                                 | —       |             |              | 0.042         | .415        | -0.060 to 0.145 | 0.056         | .319        | -0.055 to 0.167 | 0.008         | .899            | -0.117 to 0.133  |         |          |        |  |
| BMI (kg/m <sup>2</sup> )                    | —       |             |              | 0.250         | .067        | -0.018 to 0.518 | 0.230         | .102        | -0.046 to 0.505 | 0.134         | .332            | -0.138 to 0.407  |         |          |        |  |
| Cardiovascular risk factors                 |         |             |              |               |             |                 |               |             |                 |               |                 |                  |         |          |        |  |
| Diabetes mellitus (0 = absent, 1 = present) | —       |             |              | —             |             |                 | 1.799         | .137        | -0.577 to 4.175 | 0.378         | .831            | -3.116 to 3.873  |         |          |        |  |
| Hypertension (0 = absent, 1 = present)      | —       |             |              | —             |             |                 | 0.117         | .923        | -2.278 to 2.512 | 0.741         | .535            | -1.609 to 3.091  |         |          |        |  |
| Hyperlipidemia (0 = absent, 1 = present)    | —       |             |              | —             |             |                 | 1.345         | .244        | -0.924 to 3.614 | 1.443         | .198            | -0.762 to 3.649  |         |          |        |  |
| Smoking (0 = absent, 1 = present)           | —       |             |              | —             |             |                 | 1.405         | .247        | -0.981 to 3.791 | 1.764         | .141            | -0.587 to 4.116  |         |          |        |  |
| Laboratory parameters                       |         |             |              |               |             |                 |               |             |                 |               |                 |                  |         |          |        |  |
| HbA1c (%)                                   | —       |             |              | —             |             |                 | —             |             |                 | 0.528         | .313            | -0.500 to 1.556  |         |          |        |  |
| eGFR (mL/min/1.73 m <sup>2</sup> )          | —       |             |              | —             |             |                 | —             |             |                 | -0.023        | .513            | -0.093 to 0.046  |         |          |        |  |
| Hemoglobin (g/dL)                           | —       |             |              | —             |             |                 | —             |             |                 | -1.216        | <b>&lt;.001</b> | -1.867 to -0.565 |         |          |        |  |
| Model statistics                            |         |             |              |               |             |                 |               |             |                 |               |                 |                  |         |          |        |  |
| R <sup>2</sup>                              | 0.381   |             |              | 0.393         |             |                 | 0.407         |             |                 | 0.448         |                 |                  |         |          |        |  |
| Adjusted R <sup>2</sup>                     | 0.373   |             |              | 0.380         |             |                 | 0.383         |             |                 | 0.418         |                 |                  |         |          |        |  |
| ΔR <sup>2</sup>                             | —       |             |              | <b>0.012*</b> |             |                 | <b>0.014*</b> |             |                 | <b>0.041*</b> |                 |                  |         |          |        |  |
| F-statistic                                 |         |             |              | 47.61***      |             |                 | 29.81***      |             |                 | 17.24***      |                 |                  |         | 15.08*** |        |  |

Model 1: Main effects and interaction only; Model 2: Model 1 + demographic variables; Model 3: Model 2 + cardiovascular risk factors; Model 4: Model 3 + laboratory parameters.

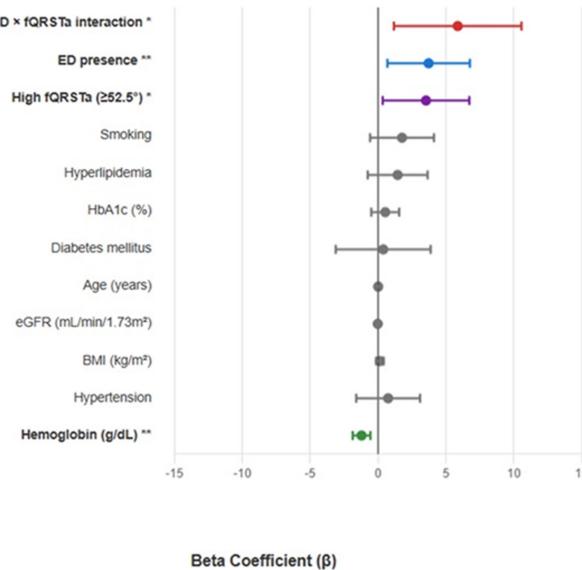
Values are presented as unstandardized regression coefficients ( $\beta$ ) with confidence intervals (95% CI).  $\Delta R^2$  represents the change in explained variance from the previous model.

Bold P-values indicate statistical significance ( $P \leq .05$ ).

\* $P < .05$ .


\*\* $P < .01$ .

\*\*\* $P < .001$ .


## Predictors of Coronary Artery Disease Severity: Hierarchical Regression Analysis

Standardized Beta Coefficients with 95% Confidence Intervals (Model 4)

(a) Gensini Score Predictors



(b) SYNTAX Score Predictors

Beta Coefficient ( $\beta$ )Beta Coefficient ( $\beta$ )Significance levels: \*  $p < 0.05$ , \*\*  $p < 0.01$ 

— Colored lines indicate statistically significant predictors; — gray lines indicate non-significant predictors

**Figure 2.** The hierarchical regression analysis for Model 4 shows a significant association of both erectile dysfunction and a high frontal QRS-T angle with a) Gensini score-based and b) SYNTAX score-based coronary artery disease severity.

their additive and synergistic value, a novel and practical approach is presented for enhancing CAD risk stratification. This is conceptually similar to the work of Colluoglu et al,<sup>30</sup> who found that the combined use of fQRSTa and platelet-to-lymphocyte ratio predicted ischemic cardiomyopathy more accurately than either parameter alone in patients with ST-elevation myocardial infarction.

**Table 5. Spearman's Rank Correlations Between Frontal QRS-T Angle, IIEF-5 Score, SYNTAX Score, and Gensini Score**

| Correlation                    | n   | Spearman's rho | 95% CI           | P     |
|--------------------------------|-----|----------------|------------------|-------|
| fQRSTa and IIEF-5 score        | 236 | -0.436         | -0.537 to -0.324 | <.001 |
| fQRSTa and SYNTAX score        | 236 | 0.484          | 0.377 to 0.579   | <.001 |
| fQRSTa and Gensini score       | 236 | 0.495          | 0.389 to 0.588   | <.001 |
| IIEF-5 score and SYNTAX score  | 236 | -0.579         | -0.660 to -0.485 | <.001 |
| IIEF-5 score and Gensini score | 236 | -0.597         | -0.675 to -0.505 | <.001 |

Interpretation of Spearman's rho values: Values range from -1 to +1, where negative values indicate inverse correlation and positive values indicate direct correlation. The magnitude indicates strength of association: 0.00-0.19 = very weak; 0.20-0.39 = weak; 0.40-0.59 = moderate; 0.60-0.79 = strong; 0.80-1.00 = very strong.

Bold P-values indicate statistical significance ( $P \leq .05$ ).

fQRSTa, frontal QRS-T angle; IIEF-5, International Index of Erectile Function-5; n, number of participants.

Hierarchical regression models provided compelling evidence that the combination of high fQRSTa and ED confers a more substantial predictive value for CAD severity than either variable alone. Notably, Group 4, which comprised patients with both high fQRSTa and ED, consistently had the highest GS and SYNTAX score, even after adjustment for potentially confounding conventional cardiovascular risk factors and laboratory markers. In the final model, the interaction between ED-positivity and high fQRSTa remained significant, suggesting a synergistic effect that amplifies the likelihood of advanced coronary atherosclerosis. Group 2 and Group 3 had significantly higher CAD burden compared to Group 1, whereas Group 4 had significantly higher CAD burden than all other groups, indicating that these ED-positivity and high fQRSTa interact multiplicatively rather than additively. These findings support the clinical utility of using ED and fQRSTa in tandem, particularly for identifying high-risk patients in whom conventional risk factors may underestimate the severity of CAD. The co-occurrence of ventricular repolarization abnormalities and ED likely reflects a shared underlying pathophysiological substrate, potentially involving endothelial dysfunction, microvascular disease, or autonomic imbalance. Thus, a combined approach may enhance early detection and risk stratification in asymptomatic or minimally symptomatic male patients.

#### Study Limitations

This study had several limitations. First, its cross-sectional design limits the ability to make causal inferences between fQRSTa, ED, and CAD severity. Longitudinal studies are

warranted to determine whether these parameters can predict future cardiovascular events. Secondly, this study has several limitations regarding the diagnosis and prevalence of ED. The prevalence of ED in this sample (62.7%) may seem high; however, this is an expected finding within a high-risk population of male patients with suspected CAD, who share numerous common risk factors for both conditions. It is important to note that the diagnosis of ED was based solely on the IIEF-5 questionnaire. While this is a validated and widely used tool, it is subject to self-reporting bias. No additional confirmatory evaluations, such as a detailed urological examination, Doppler ultrasonography, or hormonal assessments, were performed to differentiate between organic and psychogenic causes of ED. This lack of a comprehensive diagnostic workup is a key limitation. Consequently, these results reflect the prevalence and associations within this specific study cohort, namely patients undergoing coronary angiography for suspected CAD, and should not be generalized to the broader male population, which would likely exhibit a lower prevalence and different risk profile. Thirdly, although the results were adjusted for a wide range of potentially confounding cardiovascular risk factors and laboratory markers, residual confounding from unmeasured variables such as testosterone levels, physical activity, or psychosocial stress cannot be entirely excluded. Fourthly, fQRSTa, which reflects ventricular repolarization heterogeneity, may have been influenced by unmeasured factors such as medication use, electrolyte disturbances, and autonomic tone. Lastly, the relatively small number of patients in Group 3 (n=25) may have reduced the statistical power of the relevant subgroup analyses.

## CONCLUSION

These findings demonstrated that both ED and high fQRSTa are independently and synergistically associated with increased CAD severity. The combination of ED-positivity and high fQRSTa, 2 easily accessible noninvasive markers, provides incremental predictive value beyond traditional cardiovascular risk factors. Hence, simultaneous assessment of ED and fQRSTa may serve as a practical and efficient tool for identifying patients at elevated risk of severe coronary atherosclerosis, particularly in settings where early and cost-effective risk stratification is essential.

**Ethics Committee Approval:** Ethical committee approval was received from the Ethics Committee of Health Sciences University, Adana City Training and Research Hospital (Approval No.: 12/458; Date: April 10, 2025).

**Informed Consent:** Written informed consent was obtained from all participants who agreed to take part in the study.

**Peer-review:** Externally peer-reviewed.

**Author Contributions:** Concept – P.Ö.Y., M.H.Ö.; Design – P.Ö.Y., M.H.Ö.; Supervision – P.Ö.Y.; Resource – P.Ö.Y., M.H.Ö.; Materials – P.Ö.Y., M.H.Ö.; Data Collection and/or Processing – P.Ö.Y., M.H.Ö.; Analysis and/or Interpretation – P.Ö.Y.; Literature Search – P.Ö.Y., M.H.Ö.; Writing – P.Ö.Y.; Critical Reviews – P.Ö.Y., M.H.Ö.

**Declaration of Interests:** The authors have no conflicts of interest to declare.

**Funding:** The authors declare that this study received no financial support.

## REFERENCES

1. Jackson G. Erectile dysfunction and asymptomatic coronary artery disease: frequently detected by computed tomography coronary angiography but not by exercise electrocardiography. *Int J Clin Pract.* 2013;67(11):1159-1162. [\[CrossRef\]](#)
2. Jackson G, Padley S. Erectile dysfunction and silent coronary artery disease: abnormal computed tomography coronary angiogram in the presence of normal exercise ECGs. *Int J Clin Pract.* 2008;62(6):973-976. [\[CrossRef\]](#)
3. Öncel CR, Akkoç A. P wave dispersion in patients with erectile dysfunction. *Interv Med Appl Sci.* 2019;11(2):101-105. [\[CrossRef\]](#)
4. Memon SA, Adil M, Khan FR, et al. Association between erectile dysfunction, cardiovascular risk factors, and coronary artery disease: role of exercise stress testing and International Index of Erectile Function (IIEF-5) questionnaire. *IJC Heart Vasc.* 2022;40:101033. [\[CrossRef\]](#)
5. Raheem OA, Su JJ, Wilson JR, Hsieh TC. The association of erectile dysfunction and cardiovascular disease: a systematic critical review. *Am J Mens Health.* 2017;11(3):552-563. [\[CrossRef\]](#)
6. Dsouza SC, Rahman O. Association of erectile dysfunction with coronary artery disease in type 2 diabetes mellitus. *Ghana Med J.* 2023;57(1):43-48. [\[CrossRef\]](#)
7. Karabakan M, Bozkurt A, Saylam B, Kucuksu Z, Hirik E, Kagan Aktas B. A new proof for the relationship between erectile dysfunction and atherosclerosis: fragmented QRS? *Int J Impot Res.* 2020;32(3):302-307. [\[CrossRef\]](#)
8. Yao F, Huang Y, Zhang Y, et al. Subclinical endothelial dysfunction and low-grade inflammation play roles in the development of erectile dysfunction in young men with low risk of coronary heart disease. *Int J Androl.* 2012;35(5):653-659. [\[CrossRef\]](#)
9. Kahraman S, Kalkan AK, Türkiye AB, et al. Frontal QRS-T angle is related with hemodynamic significance of coronary artery stenosis in patients with single vessel disease. *Anatol J Cardiol.* 2019;22(4):194-201. [\[CrossRef\]](#)
10. Karadeniz FÖ, Altuntaş E. Correlation between frontal QRS-T angle, Tp-e interval, and Tp-e/QT ratio to coronary artery severity assessed with SYNTAX score in stable coronary artery disease patients. *J Arrhythm.* 2022;38(5):783-789. [\[CrossRef\]](#)
11. Dogan A, Kahraman S. Frontal QRS-T angle predicts coronary atherosclerotic burden in patients with ST segment elevation myocardial infarction. *J Electrocardiol.* 2020;58:155-159. [\[CrossRef\]](#)
12. Zhang X, Zhu Q, Zhu L, et al. Spatial/frontal QRS-T angle predicts all-cause mortality and cardiac mortality: a meta-analysis. *PLoS One.* 2015;10(8):e0136174. [\[CrossRef\]](#)
13. Giannopoulos G, Dilaveris P, Batchvarov V, et al. Prognostic significance of inverse spatial QRS-T angle circadian pattern in myocardial infarction survivors. *J Electrocardiol.* 2009;42(1):79-84. [\[CrossRef\]](#)
14. Turunc T, Deveci S, Güvel S, Peşkircioğlu L. The assessment of Turkish validation with 5 question version of International Index of Erectile Function (IIEF-5). *Turk Urol Derg.* 2007;33:45-49.
15. Deger M, Ozmen C, Akdogan N, Tepe O, Yucel SP, Izol V. The relationship between Gensini score and erectile dysfunction in patients with chronic coronary syndrome. *Sex Med.* 2021;9(3):100376. [\[CrossRef\]](#)
16. Dai Y, Mei Z, Zhang S, et al. Sexual dysfunction and the impact of beta-blockers in young males with coronary artery disease. *Front Cardiovasc Med.* 2021;8:708200. [\[CrossRef\]](#)

17. Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. *Am J Cardiol.* 1983;51(3):606. [\[CrossRef\]](#)
18. Oishi Y, Wakatsuki T, Nishikado A, Oki T, Ito S. Circulating adhesion molecules and severity of coronary atherosclerosis. *Coron Artery Dis.* 2000;11(1):77-81. [\[CrossRef\]](#)
19. Hajasadeghi S, Firouzi A, Bahadoran P, Hassanzadeh M. The value of wrist circumference for predicting the presence of coronary artery disease and metabolic syndrome. *Indian Heart J.* 2016;68(Suppl 3):S5-S9. [\[CrossRef\]](#)
20. Nose D, Shiga Y, Ueda Y, et al. Association between plasma levels of PCSK9 and the presence of coronary artery disease in Japanese. *Heart Vessels.* 2019;34(1):19-28. [\[CrossRef\]](#)
21. Biernikiewicz M, Sobieszczanska M, Szuster E, et al. Erectile dysfunction as an obesity-related condition in elderly men with coronary artery disease. *J Clin Med.* 2024;13(7):2087. [\[CrossRef\]](#)
22. Desai M, Naik G, Kamat US, Cacodcar JA. Concurrence of erectile dysfunction and coronary artery disease among patients undergoing coronary angiography at a tertiary Medical College Hospital in Goa. *Indian Heart J.* 2020;72(2):123-125. [\[CrossRef\]](#)
23. Nehra A, Jackson G, Miner M, et al. The Princeton III consensus recommendations for the management of erectile dysfunction and cardiovascular disease. *Mayo Clin Proc.* 2012;87(8):766-778. [\[CrossRef\]](#)
24. Bektaş O, Karagöz A, Bayramoğlu A, et al. Association between fragmented qrs and left ventricular systolic function in patients with erectile dysfunction. *Acta Cardiol Sin.* 2018;34(6):496-501. [\[CrossRef\]](#)
25. Altunkol A, Topuz AN, Genç Ö, Alma E, Topuz M. Atrial electro-mechanical duration prolongs in patients with erectile dysfunction. *Aging Male.* 2020;23(2):154-160. [\[CrossRef\]](#)
26. Lin WY, Lin CS, Lin CL, Cheng SM, Lin WS, Kao CH. Atrial fibrillation is associated with increased risk of erectile dysfunction: a nationwide population-based cohort study. *Int J Cardiol.* 2015;190(1):106-110. [\[CrossRef\]](#)
27. Yılmaz S, Kuyumcu MS, Akboga MK, et al. The relationship between erectile dysfunction and paroxysmal lone atrial fibrillation. *J Interv Card Electrophysiol.* 2016;46(3):245-251. [\[CrossRef\]](#)
28. Tanrıverdi Z, Besli F, Gungoren F, Tascanov MB. What is the normal range of the frontal QRS-T angle? *Diabetes Res Clin Pract.* 2020;160:107645. [\[CrossRef\]](#)
29. Akin H, Bilge Ö. Relationship between frontal QRS-T duration and the severity of coronary artery disease in who were non-diabetic and had stable angina pectoris. *Anatol J Cardiol.* 2021;25(8):572-578. [\[CrossRef\]](#)
30. Colluoglu T, Aksu MH, Akin Y, Onalan O. Combined use of frontal plane QRS-T angle and platelet-to-lymphocyte ratio in the risk prediction of ischemic cardiomyopathy in STEMI. *Ann Noninvasive Electr Cardiol.* 2024;29(1):e13106. [\[CrossRef\]](#)