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Artificial intelligence and cardiovascular imaging:
A win–win combination

Introduction

Artificial intelligence
Artificial intelligence (AI) is the branch of computer science 

that refers to the ability of computers and robots to perform skills 
that are typical of intelligent beings such as “reasoning,” dis-
cover meanings, generalize, or learn from past experiences (Fig. 
1). Well-known examples of AI applications in everyday life are 
self-driving automobiles, speech-recognition, and autocorrect 
text software packages.

Machine learning (ML) (a subset of AI) applies statistical 
techniques to big data to learn from them to make predictions 
when new data come and improve its own knowledge to bet-
ter react the next time it is presented with similar data (Fig. 1). 
In cardiovascular imaging, data are identified by image features 
(such as their individual measurable characteristics) (Fig. 2).

Three types of ML are used: supervised, unsupervised, 
and reinforcement learning. Supervised learning relies on the 

relationship between the input and already known output of a 
given dataset (Fig. 3). It is used for classification (sorting items 
into categories) or regression (identifying real values). In con-
trast, unsupervised learning allows us to tackle problems with 
little or no idea about the output (Fig. 4). Data can be grouped 
based on the relationship existing among the variables (1). Un-
supervised learning is suited for clustering (identifying similari-
ties in groups) and anomaly detection (identifying abnormalities 
in data). Finally, with reinforcement learning, the agent decides 
what to do to perform a given task by finding the best possible 
way to maximize the reward. Reinforcement learning is suited to 
develop decision-making processes and reward systems and to 
set reactions to the environment. Deep learning (DL) is based on 
artificial neural networks (ANN)-computing systems that are not 
programmed with task-specific rules, similarly to biological neu-
ral networks (Fig. 5). DL utilizes feature (representation) learning, 
which is a set of techniques enabling a system to perform auto-
mated feature engineering and classification through raw data.

Rapid development of artificial intelligence (AI) is gaining grounds in medicine. Its huge impact and inevitable necessity are also reflected in 
cardiovascular imaging. Although AI would probably never replace doctors, it can significantly support and improve their productivity and diag-
nostic performance. Many algorithms have already proven useful at all stages of the cardiac imaging chain. Their crucial practical applications 
include classification, automatic quantification, notification, diagnosis, and risk prediction. Consequently, more reproducible and repeatable 
studies are obtained, and personalized reports may be available to any patient. Utilization of AI also increases patient safety and decreases 
healthcare costs. Furthermore, AI is particularly useful for beginners in the field of cardiac imaging as it provides anatomic guidance and inter-
pretation of complex imaging results. In contrast, lack of interpretability and explainability in AI carries a risk of harmful recommendations. This 
review was aimed at summarizing AI principles, essential execution requirements, and challenges as well as its recent applications in cardio-
vascular imaging. (Anatol J Cardiol 2020; 24: 214-23)
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According to a U.S. Food and Drug Administration state-
ment, AI-based technologies have the potential to transform 
healthcare by deriving new and important insights from the 
vast amount of data generated in daily healthcare practice. 
Accordingly, the fundamental prerequisite is the availability of 
big data.

Big data
Big data refers to very large sets of data that can only be 

stored, understood, and used with the support of special tools 
and methods. In medicine, they can be derived from clinical 
records (such as electronic health records), laboratory results, 
molecular data (such as OMICS data, genomics, transcrip-
tomics, proteomics), imaging (radiomics and PACS-derived data 
from different modalities), and their integration (2).

There are five big data characteristics referred to as the “V’s” 
from ML algorithms. The datasets should be sizable (volume), be 

created and processed quickly (velocity), originate from differ-
ent sources (variety), be reliable (veracity), and provide answers 
to crucial questions (value).

The added value is the ability of AI applications to iden-
tify patterns by scrutinizing and analyzing massive amounts of 
data. Usually, these patterns may remain unrecognized by hu-
man reasoning and classical statistical analysis because they 
involve variables that were not previously linked to the studied 
phenomenon, and not usually considered in clinical reasoning or 
in statistical planning. Although humans have abstract-thinking 
ability, they are not able to find and identify patterns embedded 
into large quantities of multidimensional and apparently unre-
lated data.

Figure 2. Main features of the cardiovascular images that can be 
extracted with radiomics techniques and used to build big data to 
train and test artificial intelligence applications [adapted from Artificial 
Intelligence in Cardiovascular Imaging, Dey et al. (4)]
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Figure 1. Schematic representation of the hierarchy among artificial 
intelligence, machine learning, and deep learning. All three are 
branches of the data science. Machine learning and deep learning are 
subfields within artificial intelligence and need big data to “learn.”

Figure 3. Supervised learning. During the training step (left panel), the algorithm is given a large number of labeled inputs (known diagnosis, 
anatomical structure) along with desired outputs to teach it. During the testing step (right panel), the algorithm is given new order to check if it is 
able to label them correctly. If not, the algorithm needs improvement. This technique enables the algorithm to classify or predict views, cardiac 
strictures, or diagnosis on the basis of the labeled data entered into the machine
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Artificial intelligence and cardiovascular imaging
AI is gaining interest in cardiovascular imaging, addressing 

problems of inconsistency, inter- and intra-observer variability 
during image acquisition and interpretation. These are particular-
ly sensitive topics in echocardiography compared to other imaging 
techniques such as cardiac magnetic resonance (CMR) and car-
diac computed tomography (CCT), which is more affected by in-
terobserver variability, and is strongly dependent on the expertise 
of operators (3). Cardiovascular imaging and echocardiography, 
in particular, are in increasing demand and are becoming more 

complex. Therefore, to maintain high quality despite the cost, it 
is imperative to find ways to decrease variability, acquisition, and 
postprocessing time while improving efficiency. These are areas 
where AI could be extremely advantageous for the benefit of the 
patients, cardiologists, and healthcare system (Fig. 6).

Historically, AI algorithms have been utilized to evaluate static 
images in radiology. The dynamic nature of cardiac imaging mo-
dalities represents a particular challenge for AI. Current problems 
with timing, acquisition, and diagnostic accuracy may occur at 
all steps of the imaging chain (Fig. 6). The application of the new 

Figure 4. Unsupervised learning is a technique that feeds the algorithm with unlabeled data sets to detect previously unknown patterns (Left 
panel). It is the machine that identifies the patterns needed to classify objects (Right panel), cluster patients in homogeneous groups
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Figure 5. Schematic representation of how an artificial neural network works. In the case of a Convolutional Neural Network, the input is an image 
(a matrix of pixels). The input is processed through a chain (called a graph) of neural layers. At the end of the chain, an output of any desired result 
can be returned. Although five layers are shown, in reality hundreds or thousands of layers are used
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computational methods and tools enhances image segmenta-
tion, thus enabling automated measurements, and eventually, 
automated diagnosis. AI also reduces the cost of examinations 
and increases their value. Furthermore, radiomics–a method that 
extracts a large amount of quantitative features (Fig. 2), such as 
signal intensity, texture or shape from r images using data-char-
acterization algorithms–enables the creation of large datasets 
so that any abnormality can be characterized by hundreds of pa-
rameters. These data combined with digitized clinical informa-
tion improves the diagnostic process and lead to personalized 
treatments and prognostic stratification (4-6). AI-based software 
packages allowing fully automated quantitative assessment of 
images are now commercially available for echocardiography, 
CMR, CCT, and nuclear cardiac imaging. Future software pack-
ages will likely enable to triage unread studies by the likelihood 
of having abnormal findings and prioritize their reporting. The 
ability of AI algorithms to detect specific heart diseases (such 
as hypertrophic cardiomyopathy, and amyloidosis) when the im-
ages meet specific criteria, seems to be promising (7). AI can 
also improve the image acquisition process itself. New software 
packages integrate real-time assessment of image quality with 
anatomic guidance to help beginners in acquiring standard 
echocardiographic views (8). Another application of AI is in the 
comparison of real-time images with previous examinations (3). 
The public availability of AI libraries (Tensorflow or PyTorch) 
made research and use of AI algorithms possible, not only for 
professional data scientists, but also for clinical researchers (9).

Essentials to apply AI to cardiovascular imaging
The essential requirements for ML performance are perti-

nent and comprehensive data, appropriate, validated, and useful 
techniques in clinical practice. Data are indispensable for creat-
ing the model (training), and to verify if the algorithm provides the 
similar outputs, when given new inputs (testing). It is important 
to avoid using same data for both training and testing, except for 
“x-fold cross-validation” method, where the dataset is split and 
the testing is repeatedly performed on nontraining data.

AI algorithms need large datasets of high quality. The quality 
of the source data is crucial: the old “garbage in, garbage out” 

concept is still valid. Patient records, medical registries, and 
cardiovascular images are not always collected in accurate and 
complete datasets, with data quality far from optimal. Accord-
ingly, to get the most from the application of AI to cardiovascular 
imaging, images must be collected, adequately organized, con-
sistently labeled, and linked to clinical and laboratory data. Fi-
nally, all data must be accessible in big repositories.

A good example is a potent resource for AI development cre-
ated by Slomka et al. (10). The REFINE SPECT–the Registry of 
Fast Myocardial Perfusion Imaging with Next generation SPECT 
may serve as a template for other imaging modalities. Another 
example is the CMR image database created for the 2016 Kaggle 
Data Science Bowl Competition, in which >1000 CMR datasets 
were shared by the National Institutes of Health (4). Conversely, 
homogenous and small datasets carry the risk of overfitting, 
where the model befits only a specific output.

Implementation of AI in imaging involves three steps–data 
and image features, computational techniques, and imaging ap-
plications. Supervised and unsupervised learning are the most 
widely used ML methods. The crucial practical applications of 
ML in imaging are quantification, notification, diagnosis, and 
prediction. Quantification includes automated measures, image 
quality and sorting, whereas “red flag” images and workflow pri-
oritization are the most important notification tools.

Challenges of AI application in cardiovascular imaging
The serious downsides or “black boxes” of AI are the lack of 

both interpretability and explainability. It seems not to be a major 
issue when AI is applied to identify views, and the image seg-
mentation is not properly done. Physicians that see the images 
can always correct it. Conversely, if the AI tool makes harmful 
recommendations (such as incorrect diagnosis or risk predic-
tion), the consequences are more serious. Removing the “black 
boxes” in AI is currently an area of extensive research to mini-
mize the uncertainty of the decision-making process.

The human brainpower is still much more complex than cur-
rent AI algorithms, and it will take many years before we can 
entirely depend on new technologies to interpret cardiac im-
ages. Furthermore, we have the issue of personal medical data 
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Figure 6. Artificial intelligence impact in the various steps of the cardiac imaging chain
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being used to improve healthcare. According to an online survey 
among over 2000 adults from the United Kingdom, most respon-
dents were uncomfortable with that resolution (6).

Practical applications of AI in cardiovascular imaging
Echocardiography
Echocardiography is by far the most frequently used cardio-

vascular imaging modality worldwide. However, this technique 
is affected by a significant inter- and intra-observer variability 
in manual quantification of the echocardiographic parameters, 
and an inconsistent interpretation of studies due to varying im-
age quality, arduous boundary detection, and professional ex-
perience (11). The AI algorithms reduce this discrepancies and 
improve the accuracy of the technique (12-18).

Early applications of AI in echocardiography focused on 2D 
images. Nowadays, AI-based computer programs can identify 
cardiac views and measure different parameters such as cardi-
ac chamber dimensions and volumes, ejection fraction, spectral 
Doppler-derived indexes from digital imaging and communica-
tions in medicine format images in less than a minute (19). As 
recently demonstrated, a DL model (EchoNet) based on convolu-
tional neural networks (CNN), has proven to be very effective in 
areas such as image recognition and classification. They are able 
to identify cardiac structures, evaluate their function, as well as 
predict systemic phenotypes (20). EchoNet accurately recog-
nized the presence of pacemaker leads [area under the curve 
(AUC)=0.89), enlarged left atrium (AUC = 0.86), left ventricular (LV) 
hypertrophy (AUC=0.75), LV end systolic and diastolic volumes 
(R2=0.74 and 0.70, respectively), and ejection fraction (R2=0.50). 
It also predicted systemic phenotypes of age, weight and height 
(R2=0.46, 0.56, and 0.33, respectively), and sex (AUC=0.88). The 
model was trained on a dataset of over 2.6 million images from 
2850 patients. The ML pipeline involved sample images from 
echocardiogram videos, classifying them by view, cropping to 
eliminate information outside the scanning sector, model training 
and outcome prediction (20). Zhang et al. (7) used 14,035 echo-
cardiograms to train CNN models for multiple tasks including 
automated identification of 23 viewpoints and cardiac chambers 
segmentation across five standard views, quantify chamber vol-
umes, LV mass, and ejection fraction. Automated measurements 
were comparable (or even superior) to manual ones. Finally, we 
developed models to detect hypertrophic cardiomyopathy, car-
diac amyloidosis, and pulmonary arterial hypertension with C-
statistics of 0.93, 0.87, and 0.85, respectively [7].

The application of AI in 3D echocardiography is promising, 
given that 3D is one of the main advancements in echocardiog-
raphy and measurements obtained from 3D data sets corre-
late with CMR measurements better than 2D (21). Although the 
American Society of Echocardiography and the European As-
sociation of Cardiovascular Imaging recommend the use of 3D 
echocardiography to quantify ventricular cavity volumes, it re-
quires high proficiency level, limiting its application in everyday 
clinical practice (22). Automatic chamber measurements of 3D 

echocardiograms, allow even less experienced sonographers to 
fully exploit the potential of 3D, making it to become the standard 
of examination (14).

Furthermore, AI-based algorithms can also automatically 
evaluate the severity of valvular diseases and is helpful in the 
preoperative assessment of patients. Moghaddasi et al. (23) 
used the Support Vector Machine (SVM which is a supervised 
ML model) classifier to determine the severity of mitral regurgi-
tation. Among 139 patients, an accuracy of 99.52% was record-
ed for the detection of normal mitral valve, and 99.38%, 99.31%, 
and 99.59%, respectively, for the identification of mild, moder-
ate, and severe mitral regurgitation (overall sensitivity=99.38% 
and specificity=99.63%) using SVM classifier. A proof-of-con-
cept study of 530,871 echocardiograms by Playford et al. (24) 
revealed that their AI algorithm correctly identified 95.3% of 
patients with high-gradient aortic stenosis versus 73.9% for 
the continuity equation. The severity of aortic stenosis was ob-
tained by the entire phenotype evaluation, without reference 
to LV outflow track velocity or dimension. The algorithm per-
formed equally well in low-flow and low-gradient severe aortic 
stenosis, regardless of systolic LV function. In another study 
with 47 patients who underwent transcatheter aortic valve im-
plantation, periprocedural aortic annulus measurements by AI 
echocardiographic software correlated with measurements ob-
tained from CCT more closely than 2D echocardiography (25). 
It’s likely that the use of AI will persuade the medical commu-
nity to change the paradigm of aortic stenosis treatment soon. 
A study by Strange et al. in 241,303 patients demonstrated a sur-
prisingly marked increased risk of death evidently from a mean 
aortic valve gradient >20 mm Hg (26).

Moreover, fully automated, rapid, and reproducible assess-
ment of 2D LV global longitudinal strain (GLS) is already feasible. 
It will take less than 8 seconds to be evaluated (12). Salte et al. 
(27) compared fully automated GLS measurements based on DL 
to the conventional ones on 100 transthoracic echocardiograms 
of patients with acute myocardial infarction or de novo heart 
failure, regardless of the image quality. GLS was −11.6%±4.5% 
for DL method and −12.8%±5% for the conventional method. Fea-
sibility of GLS measurements was 93% and 99%, respectively. 
This novel DL technique succeeded to automatically identify and 
classify the standard views, perform myocardium tracing and 
motion estimation, and evaluate GLS, easing its use in important 
clinical decisions (27).

Cardiac magnetic resonance
AI in CMR is a rapidly developing field, and it experienced 

a turning point in 2017. Robert Balaban (National Institutes of 
Health) gave a visionary keynote lecture at the Society for Car-
diovascular Magnetic Resonance Annual Scientific Session 
“What’s Next To come in CMR” with the crucial conception–
“Drawing circles. This has to stop.” By this, the Arterys company 
received the Food and Drug Administration approval for the AI-
based CMR interpretation (6, 28).
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Over recent years, ML, and specifically DL, has been used 
successfully to address main issues limiting CMR diffusion. This 
includes cost-effectiveness (long duration of images acquisition 
and reconstruction, time-consuming image analysis), and the 
complexity of acquisition of images both due to technical rea-
sons (coping with cardiac and respiratory-induced motion of the 
heart), and to the high demands on patients (in terms of compli-
ance to breath holding and scan duration).

ML can be applied in all steps of the cardiovascular imag-
ing chain (image acquisition, reconstruction, and segmentation, 
myocardial tissue characterization, diagnosis, and prognosis). 
The image acquisition workflow may be optimized by automated 
localization of the heart, planning of image acquisition planes, 
optimal frequency adjustment, and scan control framework 
detecting artifacts (29, 30). Such features are now available, 
or under development and implementation by many vendors. 
Furthermore, DL approach has been proposed to speed up the 
acquisition and the reconstruction of the images. For example, 
techniques implementing DL to compressed sensing (which 
exploits spatiotemporal redundancies to reconstruct magnetic 
resonance images from undersampled k-space data), proved to 
be superior to the standard techniques in terms of speed and 
image quality (31). Another promising application for DL is in its 
high-dimensional imaging (3D, 4D), including late gadolinium en-
hancement, hemodynamic flow, and perfusion, which all require 
acceleration techniques (29).

Another field in which AI shows great potential is in image 
segmentation. At present, manual endo- and epicardial border 
contouring is needed to calculate mass and volumes, though 
very time-consuming. Many automated segmentation algorithms 
have published up-to-date, achieving Dice similarity coefficients 
of 0.95, or better, when compared to manual tracing (32). How-
ever, manual correction is still needed in LV outflow tract, api-
cal slices, right ventricle, and the presence of trabeculae and 
thrombi (29, 33-35). After identifying heart muscle and cavity, 
DL partitioning algorithms can also calculate functional param-
eters, such as ejection fraction. DL frameworks adapted for gen-
eral image segmentation can use pixel-based classification or 
regression.

DL-based automated segmentation can be used in myo-
cardial tissue characterization. Examples include automated 
late gadolinium enhancement quantification (both for ischemic 
and nonischemic scars), detection of diffuse interstitial fibro-
sis, myocardial edema or lipid deposition (29, 35, 36). Recently, 
automated online quantitative myocardial perfusion has been 
developed, validated, and deployed (37). It is a dual sequence 
technique characterized by the simultaneous acquisition of 
a low-resolution arterial input function and a high-resolution 
myocardial perfusion acquisition. The AI tool exploits a CNN-
based solution to accurately detect the LV blood pool from its 
arterial input function image series (38) and perform automatic 
segmentation of the left ventricle cavity and myocardium (ex-
cluding myocardial fat and papillary muscles). A perfusion map 

is obtained, with each pixel of myocardium corresponding to 
a number represented by a color scale. The global myocardial 
blood flow (MBF) is then calculated automatically as the mean 
of all pixels and global myocardial perfusion reserve as the ratio 
of the stress to rest MBF.

In addition, the first applications of radiomics and texture 
analysis (TA) in CMR show a promising potential. TA is accurate 
in differentiating between acute and chronic myocardial infarc-
tion, (39) enabling enhanced visualization of damaged myocar-
dium and obtaining information about the surrounding tissue. 
Furthermore, recent studies suggest that TA can differentiate 
among various causes of myocardial hypertrophy (40). Finally, 
TA applied on CMR T

1 and T2 mapping proves to be an efficient 
tool in diagnosing myocarditis (41).

Finally, ML is suited for unbiased identification of prognosti-
cally important variables. A reduction in myocardial blood flow 
and myocardial perfusion reserve (measured by automated 
online quantification stress MBF and myocardial perfusion re-
serve) were independently associated with both death and ma-
jor adverse cardiac events regardless of other clinical risk mark-
ers in a 1049-patient study (42). Moreover, a 5004-patient study 
revealed that CMR-derived indices of LV sphericity are strong 
predictors of heart failure, CAD, and atrial fibrillation (43). Finally, 
the scar texture features and the patterns of right ventricular 
motions may be used to predict the occurrence of arrhythmia 
after myocardial infarction, and the outcome in patients with 
pulmonary hypertension (44, 45).

Cardiac computed tomography
With the advancement of innovative algorithms, comput-

ing power, and storage capabilities and the use of AI in CCT 
is gaining grounds in the last decade. In accordance with the 
ALARA (“as low as reasonably achievable”) principle, lower-
ing the radiation dose while maintaining the image quality is 
one of the main goals in modern CCT. This can be obtained by 
optimizing both image acquisition and generation. Furthermore, 
the ML algorithms in CCT can be used for objective detection 
and segmentation of structures, diagnostic classification, and 
outcome prediction (9).

Image enhancement by AI seems to be promising. The re-
duction of the number of acquisitions, as well as the radiation 
and contrast doses can be obtained using DL algorithms which 
are able to convert noncontrast CCT scans to the contrast ones 
(46). Furthermore, contrast CCT scans can be transformed into 
noncontrast CCT ones and be utilized for detection of coronary 
artery calcification (CAC). Another DL use is to generate more 
precise DECT (dual-energy CT) scans from SECT (single-energy 
CT) scans (47).

Current methods usually combine object detection with par-
titioning. Segmentation in CCT can be described as a pixel-based 
labeling process. The algorithms evaluate each pixel in the scan 
if it belongs to the target object. As a result, a binary mask of the 
image is obtained. Afterwards, the segmented objects can be 
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analyzed separately. This method allows for removal of the back-
ground, which is especially helpful in the assessment of CAC. 
Wolterink et al. (48) revealed that CAC can be accurately identi-
fied and quantified in CCT angiography by AI. Their method using 
ConvPairs (pairs of CNN) reached a sensitivity of 72%. Contem-
porarily, the most popular CNN architecture for semantic image 
segmentation is U-net (49).

CCT angiography has become a first-line examination in di-
agnosing coronary artery disease (CAD). It has shown excellent 
sensitivity and negative predictive value for coronary artery ste-
nosis. Therefore, its application with AI is of particular impor-
tance. The goal of van Hamersvelt et al. (50) was to automatically 
detect functionally significant coronary artery stenosis causing 
stress-induced ischemia and subsequent perfusion disorders. 
They used multiple AI techniques to detect the effects of isch-
emia that are undetected by human eyes. Firstly, LV myocardium 
(LVM) was segmented using CNN. Afterwards, a convolutional 
auto-encoder collected the most important features of LVM. In 
the third stage, SVM classified the LVM regions as either ste-
nosis or not. Finally, DL and visual assessment of the degree of 
stenosis were combined. A sensitivity and specificity of 85% and 
48% was attained, respectively. AUC was 0.76 compared to in-
vasive fractional flow reserve (AUC=0.68) (50). In addition, ML-
based CCT fractional flow reserve analysis is already feasible. 
However, it is highly influenced by CT reconstruction algorithms 
so far, potentially affecting patient management (51).

The study predicting all-cause mortality by Motwani et al. 
(52) and risk of cardiovascular events by van Rosendael et al. 
(53) in patients suspected of CAD used a relatively large data-
set of the CONFIRM (COronary CT Angiography EvaluatioN For 
Clinical Outcomes: An InteRnational Multicenter) registry. They 
included 10.030 and 8844 patients, respectively. Both research-
ers used CCT angiography features such as segment stenosis 
score, segment involvement score, modified Duke Index, num-
ber of segments with plaques, and their composition. Clinical 
markers such as age, sex, standard cardiovascular risk factors, 
were further included in the input by Motwani et al. (52). The 
highest-ranking features for predicting adverse events were se-
lected and used for further training of the algorithm. AUCs were 
0.77 (52) and 0.79 (53), respectively. They were more accurate 
than prediction based on well-known Framingham risk score 
(AUC=0.69) and current CCTA integrated risk scores (52, 53).

Nuclear cardiac imaging
Myocardial perfusion imaging (MPI) by SPECT (single-photon 

emission computed tomography) and positron emission tomogra-
phy (PET) plays a crucial role in the diagnosis and management 
of CAD. Although PET has an advantage of lower radiation ex-
posure and shorter acquisition time, SPECT is more used world-
wide. Interestingly, nuclear cardiac imaging has already used 
AI in its elementary form for many years. Regular utilization of 
endocardial border tracking software in SPECT is just one of its 
applications.

Quantitative perfusion assessment is the primary information 
derived from the MPI. It may be fully automated, as well as other 
imaging variables such as ejection fraction, systolic and diastolic 
volumes, motion thickening, transient ischemic dilation, myocar-
dial mass and blood flow, and dyssynchrony parameters. Overall, 
several hundred variables can be obtained automatically from a 
complete (rest/stress) MPI dataset. Although the dataset is typi-
cally quantitative, a physician subjectively enters the parameters 
in the final MPI diagnosis, which opens up a whole spectrum of 
possibilities for ML (54). The REFINE SPECT is the largest ongo-
ing registry of patients who underwent stress MPI utilizing the 
latest generation SPECT cameras. It currently includes scans 
of 20,418 patients from five centers, and diagnostic data of 2079 
patients from nine centers. Approximately 300 imaging variables 
are extracted automatically from each image dataset and inte-
grated with clinical parameters into a comprehensive database. 
The registry will aid in developing new AI tools for automated 
diagnosis, patient management, and prognosis (10).

Several recent studies in nuclear cardiology demonstrated 
the use of ML to improve diagnostic accuracy, identify perfu-
sion defects and their location, predict early revascularization, 
and the risk of cardiovascular events. Nakajima et al. (55) re-
vealed that their ANN might help in CAD diagnosis. The ANN 
was trained to classify abnormal areas based on the expert in-
terpretations of 1001 rest/stress SPECT images from 12 centers. 
The ANN identified stress defects better than nuclear cardiol-
ogy experts (AUC=0.92 vs. 0.82, respectively). Arsanjani et al. 
(56) have shown that computational integration of quantitative 
and functional variables using the SVM approach outperformed 
visual assessment based on receiver operating characteristic 
curve analysis and improved the diagnostic accuracy of MPI 
using SPECT for CAD. The study included 623 CAD patients 
confirmed by coronary angiography, and 334 patients with a 
low likelihood of CAD. The total perfusion deficit was comput-
ed automatically, with ischemic and ejection fraction changes 
between stress and rest examinations derived by quantitative 
software. The SVM was trained using five groups of 25 persons 
(with low likelihood of CAD, and with 0-, 1-, 2-, and 3-vessel 
CAD). The remaining 832 patients were categorized using prob-
ability. CAD was defined as probability estimate ≥0.5. The diag-
nostic accuracy of CAD was compared with visual scoring by 
two experts in the field. The sensitivity of SVM, ischemic and 
ejection fraction changes was 84%, 75%, and 31%, respective-
ly. Moreover, the specificity of SVM, total perfusion deficit, and 
ejection fraction changes were 88%, 78%, and 77%, respec-
tively. Furthermore, the diagnostic accuracy of SVM (86%) was 
significantly better than total perfusion deficit (81%), ischemic 
changes (81%) or ejection fraction changes (46%), and com-
parable to the overall accuracy of the experts (84%). AUC for 
SVM was 0.92, whereas for total perfusion deficit, ischemic 
and ejection fraction changes 0.9, 0.87, 0.64, respectively. For 
both visual readers AUC was 0.87 and 0.88 (56). Another study 
of Arsanjani et al. (57) investigated if early revascularization in 
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patients with suspected CAD can be successfully predicted by 
ML architecture. We then included 713 rest/stress SPECT stud-
ies with corresponding coronary angiographies in the study. 
From MPS, 372 patients had revascularization events within 
90 days (275 underwent percutaneous coronary intervention, 
97 coronary artery bypass surgery). Clinical and quantitative 
data were selected using an automated feature selection al-
gorithm. The results of boosted ensemble ML algorithm (Logit-
Boost) were compared to standard measures of perfusion and 
visual analysis of two experts. The sensitivity of ML for predic-
tion of revascularization (73.6%±4.3%) was similar to one of the 
experts and standalone measures of perfusion (73.9%±4.6% 
and 75.5%±4.5%, respectively). Whereas, the specificity of 
ML (74.7%±4.2%) was significantly better than both readers 
(67.2%±4.9% and 66.0%±5.0%) and TPD (68.3%±4.9%). AUC for 
ML (0.81±0.02) was the same as one of the experts (0.81±0.02), 
but superior to the second reader (0.72±0.02), and standalone 
measures of perfusion (0.77±0.02). The ML approach turned out 
to be comparable or better than experts in the field and inde-
pendent measures of perfusion derived from scintigraphy (57). 
Betancur et al. (58) used 1638 images from the REFINE SPECT 
registry to train and validate a DL algorithm for automatic de-
tection of significant coronary artery stenosis. They utilized au-
tomatically derived compact 2D polar map displays as a CNN 
input. DL network was trained by obstructive stenosis corre-
lations by invasive coronary angiography to generate a prob-
ability of obstructive CAD in each vascular territory. Patterns of 
perfusion defects were identified by feature extraction into a 
DL process combining the location, shape, and density. AUC for 
disease prediction by DL was significantly higher than for TPD 
(0.80 vs. 0.78 per person and 0.76 vs. 0.73 per vessel). The time 
needed for the evaluation of a new patient with the pretrained 
model was <1 s (58).

Conclusion

AI has become a need in cardiac imaging with crucial prac-
tical applications such as automatic quantification, notification, 
diagnosis, and risk prediction. The AI technology should not be 
seen as a replacement for cardiac imaging specialists, but as 
an aid in improving workflow, interpretation skills, and deliv-
ering more accurate and personalized reports. Radiomics–a 
method to extract a large amount of quantitative features from 
images seems to be especially useful to apply AI to cardiovas-
cular imaging. Moreover, the AI algorithms have an ability to 
detect a specific disease, when the images meet specific cri-
teria. In a near future, the unread examinations will be triaged 
by the probability of having abnormal findings (“red flags”) and 
potentially anomalous studies will be prioritized. Thus, AI may 
not only refine the workflow, but also decrease healthcare 
costs by reducing unnecessary testing and improving patient 
outcomes in the long run.
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