Abstract
Electrocardiogram-gated coronary multislice computerized tomography (CT) angiography is a rapidly improving technology allowing noninvasive imaging of coronary arteries. After the initial promising results obtained with four-section CT scanners, progressively higher temporal and spatial resolutions have been achieved by increasing gantry rotation speed and the number of detector rows and by reducing individual detector size. This review presents an overview of the general principles, technique and emerging applications and artifacts of coronary multislice CT angiography. The diagnostic performance of this new technology allows it to be used to evaluate the presence of coronary plaques and stenosis, coronary bypass graft patency, and the origin and course of congenital coronary anomalies. As it visualizes coronary artery wall in addition to lumen and provides volumetric data of heart and great vessels, it readily demonstrates plaque remodeling, ostial lesions and other cardiac and extracardiac abnormalities. The high negative predictive value of coronary CT angiography makes it a valuable tool in the evaluation of patients with low or intermediate pretest probability for coronary artery disease. However, improvements in spatial and temporal resolution are still needed in the imaging of small coronary stents, in the detection and characterization of noncalcified plaques, and to overcome image degradation by arrhythmias, higher heart rates, and calcium-related artifacts. (Anadolu Kardiyol Derg 2008; 8: Suppl 1; 29-37)