21st Department of Cardiology, Poznan University of Medical Sciences; Poznan-Poland
3Cardiovascular Imaging Unit, Department of Cardiovascular, Neural and Metabolic Sciences, Instituto Auxologico Italiano, IRCCS; Milan-Italy
Abstract
Rapid development of artificial intelligence (AI) is gaining grounds in medicine. Its huge impact and inevitable necessity are also reflected in cardiovascular imaging. Although AI would probably never replace doctors, it can significantly support and improve their productivity and diagnostic performance. Many algorithms have already proven useful at all stages of the cardiac imaging chain. Their crucial practical applications include classification, automatic quantification, notification, diagnosis, and risk prediction. Consequently, more reproducible and repeatable studies are obtained, and personalized reports may be available to any patient. Utilization of AI also increases patient safety and decreases healthcare costs. Furthermore, AI is particularly useful for beginners in the field of cardiac imaging as it provides anatomic guidance and interpretation of complex imaging results. In contrast, lack of interpretability and explainability in AI carries a risk of harmful recommendations. This review was aimed at summarizing AI principles, essential execution requirements, and challenges as well as its recent applications in cardiovascular imaging.